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THE MAGNETIC FIELD

This handout covers:

• The magnetic force between two moving charges

• The magnetic field, B , and magnetic field lines

• Magnetic flux and Gauss’s Law for  B

• Motion of a charged particle in E and B : the Lorentz force 

Important special cases:

- Motion perpendicular to uniform B
- The velocity selector
- The Hall effect

Note:

1. You do not need to remember the full vector treatment of the
 magnetic force between moving charges.

2. For exam purposes, the important relationship defining the magnetic
field, B  is

)Bv(FM ×= Q

3. However, it is important to understand the vector treatment so that 
you can gain a good conceptual grasp of the subject.

4. The key to understanding the magnetic field is to be able to use the 
vector cross product  ⇒  revise this if you are not sure of it.
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The magnetic force

Up to now, we have considered the ELECTROSTATIC force, due to
charges at rest .

Coulombs Law:
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If the charges are BOTH moving, another force
exists between them: the MAGNETIC FORCE.
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Simpler case:
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Note: 1. FM  ∝  Q1Q2   as for the electrostatic force

2. FM  ∝  v1v2 ⇒  no force unless BOTH charges are 
moving

3. MF  exists in addition to the electric force

4. The constant µo is called the

PERMEABILITY CONSTANT or the
PERMEABILITY OF FREE SPACE

SI System: µo  =  4π x 10-7  N s2 C-2

Relative magnitudes of the electric and
magnetic forces
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c  =  SPEED OF LIGHT    [To be explained later]
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2 ⇒  FM  <<  FE  unless  speeds are close to speed of light.

BUT:  The magnetic force can still dominate even at very low speed
because FE tends to be cancelled out due to the overall charge neutrality
of matter.

Example: Two wires carrying currents

EF  =  0  (neither wire is charged)

MF   ≠  0  (and can be quite large)
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The magnetic field

DEFINITION:   The magnetic force experienced
by a charge Q moving with velocity v  is

)Bv(Fmag ×= Q

This equation defines B , the MAGNETIC FIELD   

Special case: Bv ⊥    ⇒  F  =  QvB

Recall:
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But, by definition of B , 

)Bv(F 122 ×= Q

where  1B  =  magnetic field at Q2 due to Q1.
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SI Units for Magnetic Field:

1 T  (Tesla)  =  Field which exerts a force of 1 N on a 1-C charge moving
with velocity 1 m s-1 perpendicular to B .

B
F

Qv
  = ⇒ 1 T  ≡  1 N C-1 m-1 s

Magnetic field of a
moving point charge
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Magnetic field lines

Recall: Electric field lines point in the direction of E
Similarly, magnetic field lines point along B
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=   Magnetic field at P2 due to Q1

Direction is outwards
by right hand rule

Imagine we view ALONG THE DIRECTION OF MOTION, so that Q1

appears to be coming straight at us:

1v  is OUT OF PAGE

If we consider points on a
circle (e.g., P2 - P5) then
the direction of the unit

vector  r 12

∧
etc. depends

on which point we consider.

1v  is always out of the page.

Apply the right hand rule to
each point

→  B  is always tangential

⇒  Lines of B  form CLOSED LOOPS

Convention:  As before, line spacing is
used to indicate the magnitude of B
(closely spaced lines ⇒ strong field).
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Magnetic flux, ψψ

This is defined in exactly the same way as electric flux.

Consider a small flat area dA.

Let B   be the magnetic field at its centre.

Assume that dA is so small that B  can be
regarded as uniform over the whole of dA.

DEFINITION:  The MAGNETIC FLUX, dψ
through the area dA is the product of dA
and the normal component of B .

or dψ  =  (Bcosθ)dS  so  dψ  =  AB d⋅

where Ad  is the NORMAL VECTOR of the area dA:

Magnitude of  Ad is: dA
Direction of Ad  is: perpendicular to dA

Note: 1. Magnetic flux is a SCALAR.

2. Young & Freedman uses the symbol ΦB for magnetic flux

3. The SI unit of magnetic flux is the Weber (Wb):

1 Wb  ≡  (1 Tesla)(1 m2)  or  1 T  ≡ 1 Wb m-2.

Normalθ

Area  ds

to ds

dA

B

Area dA

Normal
vector
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Magnetic flux for the case of a non-uniform
field passing through an arbitrary surface

Proceeding exactly as we did for the electric flux (see handout on
electric flux and Gauss’s Law), we can show that the total magnetic flux
crossing a surface S is

∫ ⋅=Ψ
S

dAB

What is Ψ for a closed surface?

Recall:  Gauss’s Law for E :
o

enclosedQ
d

ε
=⋅=Φ ∫   AE  

Lines of E begin and end on electric charges.  But lines of B form closed
loops (there is no equivalent of charge - i.e., no “magnetic monopoles”).

⇒ as many magnetic field lines will leave a given volume as enter it
(no enclosed “magnetic charge”).

⇒ THE TOTAL MAGNETIC FLUX THROUGH A CLOSED SURFACE 
IS ZERO

or 0d   AB  =⋅=Ψ ∫
THIS IS GAUSS’S LAW FOR THE MAGNETIC FIELD

MAXWELL’S 2nd EQUATION

This is sometimes written as  divB  = 0  or  B⋅∇  =  0.
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Force on a charged particle moving
in a uniform magnetic field

Consider a uniform B  coming out of the page (usually represented by
dots):

Let charge Q have velocity v
perpendicular to B

)Bv(F ×= Q

F  is always perpendicular to v  and B

⇒ no component of force along
the direction of v

⇒ THE SPEED NEVER CHANGES

F  =  QvB  =  constant

Constant force  �  to velocity    ⇒ MOTION IN A CIRCLE

Force required for circular motion is F
mv
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r = radius
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Speed = v,   Circumference = 2πr

⇒ Frequency is  f
v

r
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m
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2 2π π
  =  CYCLOTRON FREQUENCY

Note: 1. f is independent of v
2. f depends only on B and fundamental constants

⇒ it can be used to find B.
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What if v  also has a component of motion along the direction of B ?

Call this component v parallel

B and v parallel  are parallel,

so v parallel x B   =  0

⇒ no force in this direction.

⇒ motion along B is not affected ⇒ MOTION IN A SPIRAL

Motion of a charged particle in
combined electric and magnetic
fields: the Lorentz force

If a point charge Q moves with velocity v in an electric field E and a
magnetic field B , the resultant force on it is

[ ])Bv(EF ×+= Q THE LORENTZ FORCE

The velocity selector
Consider a charged particle moving with velocity v  perpendicular to both
an electric field, E , and a magnetic field, B .

Now  Bv ⊥   so    Bv ×Q  = QvB

⇒  the two forces balance exactly if  QvB  =  QE
⇒ the particle is not deflected if  v = E/B
⇒ only particles for which v = E/B pass through the hole
⇒ the output beam is of uniform velocity (mono-energetic).

Screen with hole

Q experiences
both electric
and magnetic
forces:

BQ
vparallel

QE

Q(v x B)
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B (into the page)
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The Hall effect
• Rectangular sample of conductor

or semiconductor carrying a
current I

• Magnetic field B applied
perpendicular  to  the
direction of the current

• Current  could be carried by either electrons

or holes

• Voltmeter between top and bottom sides measures ∆V = V1 - V2

  If I is carried by electrons:   If I is carried by holes:

Build-up of negative charge Build-up of positive charge
on the bottom side on the bottom side

V1  >  V2 ∆V  is positive V2  >  V1 ∆V  is negative

⇒ we can find out whether the current is carried by electrons
(n-type semiconductor) or holes (p-type semiconductor).

Charge build-up  → electric field,
E , between top and bottom sides

E  opposes further charge build-up

⇒ Equilibrium established when eE = evB

⇒ e (∆V/b)  =  evB  ⇒  ∆V  =  vBb (b  = distance between top and 
bottom sides)
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∆V

V1

V2



EMF  2005 Handout 7: The Magnetic Field 11

We can relate the speed, v, to
the current, I:

Let n = no. of carriers per unit
volume (each with charge e)

Consider the amount of charge,
dQ, crossing area ab in time dt:

dQ =  amount of charge in this volume

So dQ = ne(ab)(vdt) ⇒ I  =  dQ/dt  =  neabv

So v
I

neab
  = ⇒

nea
IB

V   =∆ ∆V is the HALL POTENTIAL

By measuring the sign and magnitude of ∆V we can :

- Find n if B is known - i.e., investigate the sign and number density of 
the charge carriers in a sample of material

- Or find B if n is known - i.e., measure an unknown magnetic field with
  a HALL PROBE

length vdt

b

a


