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4 ENGINES. 

 

4.1 Heat Engines. 

 

We now know that in taking a fluid around a closed cycle on a PV diagram 

 

(i) The internal energy is unchanged, U = 0 

(ii) The work done on/by the system depends on the details of the path taken. 

In a clockwise cycle work is done by the system whereas the same cycle 

counter clockwise results in work done on the system. 

(iii) The heat flow into/from the system depends on the details of the path 

taken. In a clockwise cycle heat flows into the system whereas the same 

cycle counter clockwise results in heat flowing from the system. 

(iv) From the first law, Q = -W 

 

A reversible cycle is any cycle that can be operated reversibly, in one sense absorbing 

heat and giving out work. For true reversibility the heat flow must take place with 

infinitesimal temperature differences between the system and surroundings. In real 

engines which are not reversible (friction, finite pressure, leaky valves and temperature 

differences) normally heat is fed in at high temperature and waste heat is discarded at 

low (usually ambient) temperature. 

eg. 

 

STEAM ENGINE  Superheated steam in.  Condensed water out 

 

PETROL ENGINE Hot ignited petrol vapour + air in Cooler exhaust gases out. 

 

As all engines may be thought of as heat engines with a hot source reservoir and a cold 

reservoir for discarded heat we are going to idealise the concept of an engine to make it 

easier to analyse. The idealisation involves a hot heat reservoir at temperature T1 and a 

low temperature heat reservoir at temperature T2. A working system will extract heat, 

Q1 , from the former, deliver heat, Q2 , to the latter and do an amount of work, W.  
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NB. The heat reservoirs by definition can lose or accept heat without 

their temperature changing, 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Above is the schematic of the engine, this schematic and similar will be used frequently 

in the following discussions/descriptions of heat engines, refrigerators and 

heat pumps. All three of these devices use a working substance to alter the 

environment in some way, by doing work, extracting heat or delivering heat 

respectively. 

 

Efficiency of a Heat Engine 

It is easy to devise a meaningful measure of the efficiency or figure of merit for an 

engine. As its name suggests the larger it is the better also  
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In the case of the engine we get out work, W. What we put in is heat from the hot 

reservoir, Q1. It follows from our definition of efficiency or figure of merit that this is 

given by 

    
1Q

W
E   

We can use the first law to adapt this as follow. The system operates in a cycle and 

therefore  

W)QQ(WQU  210   Note the signs! 
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Refrigerators are simply heat engines cycled in the opposite direction, work in takes 

heat out as shown in the above schematic where work, W, is done on the working 

system and heat, Q2 is extracted from the cold reservoir at the end of a cycle.  

The heat pump is identical in operation to the refrigerator except that the focus is on 

delivering heat Q1 to the hot reservoir. We may write the figures of merit for the 

refrigerator or heat pump with the same considerations used for the engine 
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For a heat pump this is 
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Ideal (Carnot) Engine 

What form of engine will give the greatest efficiency? Looking at the efficiency of an 

engine 
1

21
Q

Q
E   we need a cycle that will minimise the heat rejected to the low 

temperature reservoir, Q2 and to maximise the heat into the system as extracted from the 

hot reservoir, Q1 .The question was first answered by Sadi Carnot who, it is worth 

recalling, began his seminal work whilst it was still believed that heat was a substance, 

namely caloric that couldn’t be created or destroyed. He looked at what was required of 

an efficient cycle and came to the conclusion that what was required was a reversible 

cycle. This would be a cycle in which any heat flows should take place with little or no 

temperature differences. To achieve this he proposed a cycle composed of an isothermal 

expansion of the system at the temperature of the hot reservoir T1 with heat transfer to 

the system from the reservoir with no temperature difference and an isothermal 

compression of this system at the temperature of the cold reservoir with heat transfer to 

that reservoir from the system at T2. The two isotherms are joined by two adiabatic 

processes (no heat flow) taking the expanded substance from the high to the low 

temperature and taking the compressed substance from the low temperature to the high 

temperature. 
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The Carnot cycle is shown in the diagram above. 

The four reversible processes associated with the Carnot cycle may be summarised; 

(i) b  c Reversible addition of heat at constant temperature T1 

(ii) c  d Reversible adiabatic expansion to temperature T2 

(iii) d  a Reversible rejection of heat at constant temperature T2 

(iv) a  b Reversible adiabatic compression back to temperature T1 

 

Before we continue and find the optimal efficiency attainable with a heat engine, one 

running on the Carnot cycle, a brief interlude is needed to look at; 

 

The Second Law of Thermodynamics 

The second law originated as an empirical statement about the limitations of heat 

engines. There are two early statements of the second law made after empirical 

observation of how the real world behaved; 

 

(i) The Kelvin-Planck Statement: It is impossible to devise a device 

that , operating in a cycle, produces no other effect than the extraction of heat from a 

single body (a reservoir) with the production of an equivalent amount of work. 

 

(ii) The Clausius Statement: It is impossible to devise a device that , 

operating in a cycle, produces no other effect than the transfer of heat from a cooler 

to a hotter body (reservoir). 
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Both statements, while seemingly addressing different aspects of the question of heat, 

are in fact equivalent. They are shown schematically in the two diagrams above and 

the equivalence of the two statements is demonstrated by considering the composite 

heat engines shown in the diagrams below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram on the left above shows an engine and a refrigerator running between the 

hot and the cold reservoir with the engine with its cycle adjusted to provide the work 

that runs the refrigerator. Only if the Kelvin statement was incorrect could the engine E 

in principle be made to work. If it worked then it could be used to run the refrigerator 

between the hot and cold reservoir. The refrigerator itself obeys the first law that is to 

say heat out equals heat plus work in. However the engine plus refrigerator can be 

considered a composite unit and the composite unit is equivalent to a composite 

refrigerator extracting heat from the low temperature reservoir and delivering it to 

the high temperature reservoir, heat flowing from cold to hot with no input of 

work, a violation of the Clausius statement. 
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The diagram above left shows a refrigerator taking heat from a low temperature 

reservoir and delivering it to a high temperature reservoir with no input of work, in 

contravention of the Clausius statement, and an engine, both operating between the 

same two reservoirs with the engine delivering work and waste heat, Q2 to the cold 

reservoir. The engine is obeying the first law. The left hand diagram can be 

deconstructed into the right hand diagram. This shows an amount of heat extracted from 

a hot reservoir with the delivery of an equivalent amount of work, a violation of the 

Clausius statement.  

The two statements, which otherwise appear to be addressing very different questions 

are thus shown to be logically equivalent. 
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Carnot’s Theorem 

Carnot’s theorem simply states that  

no heat engine operating between two given heat reservoirs can be more efficient 

than a Carnot engine operating between those same two reservoirs  

A Carnot engine as briefly mentioned earlier is; 

(i) A reversible engine 

(ii) An engine operating between two heat reservoirs.  

To achieve this heat is transferred reversibly (that is at zero temperature difference) to 

and from the system on a cycle of two isotherms at the high and the low temperature 

linked in a cycle by two adiabatic curves. This is a reversible engine with heat transfer 

taking place at constant system temperature ie. isothermally. 

 

Proof.  

Suppose such an engine, E
/
 , with CE /    did exist and did an amount of work, W

/
. 

Choose a Carnot engine that does the same work. If we reverse the Carnot engine it acts 

as a refrigerator. We can represent this on diagrams as shown below. 
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111
Q

W

Q

W

Q

W /

C/

/
/     /QQ

11   

It therefore follows 

 

   // QWQWQQ
2112    /QQ

22   

 

Now turn attention to the upper right hand diagram. Within the dashed box the Carnot 

engine is being run in reverse and acting as a refrigerator. The composite system 

extracts positive heat /QQ
22   from the cold reservoir and delivers an amount of heat to 

the hot reservoir /QQ
11  . But we have  

       /// QQWQWQQQ
222211   

The composite system is then in disaccord with the Clausius statement and our premise 

that CE /    cannot be correct. On the other hand, if CE /    then /QQ
11   and 

no net heat is delivered. This is allowed so we have proven reductio ad absurdum that  

   CE       

thus proving the Carnot theorem. This proof is valid for any truly reversible engine as 

that was the only property that the proof relied upon, the details of the cycle not being 

mentioned. 

A corollary to this theorem is that all Carnot engines running between the same two 

temperatures have the same efficiency. To demonstrate this 
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We imagine two Carnot engines running between the same reservoirs with their cycles 

adjusted to deliver the same amount of work. Now reverse one and use the other to run 

it as a refrigerator. We have just seen that to avoid a contradiction with the Clausius 

statement we must have /CC
  . We can now reverse the roles of the two Carnot 

engines and find CC /   .  

The conclusion, reductio ad absurdum, is then, that CC /   . 

 

NB, The efficiency of a Carnot engine is independent of the working substance 

and can depend only on the equilibrium properties of the reservoirs. This is a non-

trivial remark!! 

It was understood by Kelvin that this provided a method of establishing an absolute 

temperature scale. He realised that if we have a Carnot engine its efficiency is 

   
1

21
Q

Q
C   

Independent of the material of the system and dependent only upon the temperatures 

of the two reservoirs. 

With this observation he claimed that we could define thermodynamic 

temperatures, , for the reservoirs by 
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We fix the scale factor by defining 16273.
intPoTriple

  and  is then an  

 

Absolute Thermodynamic Temperature 

 

found for example by measuring the efficiency of a Carnot engine between a 

reservoir at the unknown temperature and a second at the triple point of water. 

The temperature so found is  

independent of any particular material. 
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This proposition is demonstrated by consideration of two Carnot engines running in 

series as shown below where the heat rejected by the first engine is equal to the heat 

taken in by the second engine 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The two engines on the left operate such as to leave the reservoir at T2 unchanged with 

engine C12 adjusted to deposit the same amount of heat into T2 as is taken by engine C23. 

By Kelvin’s definition of a thermodynamic temperature scale we have 
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It follows by dividing the first by the second that  
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Thus, using a range of Carnot engines a complete temperature scale may be defined. 

It might be supposed (hoped!), that the absolute temperature,  , is identical 

to the ideal gas temperature, TG and we proceed to prove this by analysis of the 

Carnot cycle 
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The diagram shows the Carnot cycle with an ideal gas as working substance. To remind 

ourselves that we are comparing the thermodynamic temperature  with the ideal gas 

temperature I include a subscript G with the gas temperatures, TG. 

 

For the isotherm, b  c , TG = TG1 and PV = nRTG1 
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Similarly for the isotherm, d  a, TG = TG2 and PV = nRTG2 
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Now we look at the adiabatics where 
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therefore we find that 
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We use this in the earlier equation proving that 
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and that with 

  16273.TTPTP   

it is the case that  

     = TG (= TKinetic = T) 

 

Returning to the efficiency of the Carnot cycle, 
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And this is the MAXIMUM 

THEORETICAL EFFICIENCY of any engine. 

 

We note that C = 1 only if T2 = 0! 

 

If we run the Carnot engine in reverse we have a refrigerator. The efficiency of a Carnot 

refrigerator is  
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We can also operate it as a heat pump with efficiency  
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Just a quick observation, 
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If the reservoir temperatures are very close then the heat pump and refrigerator 

efficiencies become very large, in fact much greater than 1 but the engine efficiency 

becomes very small approaching zero. The same is true of non-Carnot systems. 

Thinking about this it is clear that a refrigerator required to keep its contents at a 

temperature only slightly cooler than the ambient temperature will not be required to 

work very hard, W will be small and 
W

Q
R

2  will be very large. 

 

Example. 

A Carnot heat pump is designed to operate between T2 = 283K and T1 = 300K 

 

The efficiency is 
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Example. 

A steam engine operating with superheated steam at 200
0
C and exhaust at 10

0
C. 

 

We can give an upper limit of the Carnot efficiency. 
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Real Engines. 

1. The Otto Cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The Otto cycle is a reasonable approximation to the petrol engine but with two strokes, 

expansion followed by compression. It is depicted above with the expansion and 

compression undergone adiabatically (no heat input from external sources). Joining 

these two adiabatic curves are isochores, (no change in volume). This is a readily 

analysed engine cycle as we have the tools developed and to hand. 

analysis 

a  b is an adiabatic compression where work is done on the gas and the usual equation 

holds,    
11  


bbaa VTVT  

c  d is an adiabatic expansion where work is done by the gas  
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b  c is an isochore and no work is done as dV = 0. The heat can be calculated from the 

first law 

  1
2

3
QQ)TT(nRUUU bcbc    

adiabatic 

adiabatic 

d 

c 

b 

a 

Va 

Q1 

Q2 

P 

V 
Vb 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 98 

We can see that Q1 is positive as Tc > Tb and it is therefore a flow of heat into the gas. 

 

d  a is also an isochore and again no work is done as dV = 0. The heat can be 

calculated from the first law 
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We can see that Q2 is negative as Ta < Td and it is therefore a flow of heat from the gas. 

 

The efficiency is 
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Defining the compression ratio 
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For a compression ratio of 8 and  = 
5

7  = 1.4 for a rigid diatomic gas. 
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2. The Diesel Cycle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diesel engine cycle is shown above 

We analyse as usual to find Q1 and Q2 and thus the efficiency 

analysis 

b  c is an isobaric process joining two adiabats from Tb to Tc (Tc > Tb) 

P is constant so dTCdQ P  
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d  a is an isochoric process, V = 0 so W = 0 

From the first law 
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Is a heat flow out as we go from a higher to lower temperature and the sign is negative. 

We must therefore take the absolute value of Q for Q2 when used in the efficiency 

equations. 
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Now analyse the adiabats 

 

c  d is an adiabatic process thus 
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a  b is also an adiabatic process and similarly 
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We also know that 
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c
bc

V

V
TT   

 

We now have the ingredients to conclude the analysis 

11 
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




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






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b
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V
T
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V
TTT  

 































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
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

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b
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b
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a

b

b
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c

b
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V

V

V

V
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V

V
T

V

V

V

V
TTT
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And similarly 























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
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b
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b
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V
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V
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T

V

V
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 





















































































1111

1
1

1
1

1
1

CE

CE

b

a

c

a

b

a

c

a

bc

ad

E
rr

rr

V

V

V

V

V

V

V

V

TT

TT 




  

 

c

a

E
V

V
r   is the expansion ratio 

 

b

a

C
V

V
r   is the compression ratio 

 

Example; 5Er ,  15Cr ,  41.  

 

560.E   
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3. The Stirling Cycle. 

The Stirling cycle is an example of another engine cycle. The Stirling engine operates 

on a closed system and offers a quiet performance with potentially high efficiencies. It’s 

action may be described as follows 

(i) a  b Reversible addition of heat and expansion at constant 

temperature T1 

(ii) b  c Heat rejection and cooling at constant volume V1 from T1 to T2 

(iii) c  d Reversible rejection of heat and compression at constant 

temperature T2 

(iv) d  a Addition of heat at constant volume V2 back from T2 to 

temperature T1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We note, already that as opposed to the Carnot cycle, here as well as the heat flow 

isothermally there is also heat added and rejected during the isochoric processes and as 

heat is added with no work done this should reduce the efficiency of the Stirling cycle 

when compared with the Carnot cycle. Further, that heat is added or extracted 

irreversibly and the cycle is therefore irreversible. 

 

To obtain the efficiency of the Stirling heat engine we need to find W, Qadded and Qrejected 

on each part of the cycle. 

Q4 

Q3 

Q2 

Q1 

c 

b 

a 

d 

V2 V1 
V 

T 
Isotherm at T1 

Isotherm at T2 
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Work is only performed on or by the system during the isothermal expansion a  b and 

the isothermal compression c  d no work being performed on the isochores. 











2

1
1

V

V
lnnRTW ba  

 











1

2
2

V

V
lnnRTW dc  NB. The signs reflect the work done BY the 

system 

 

  









2

1
21

V

V
lnTTnRW  

 

The heat added to the system occurs both during the isothermal expansion a  b 

and the isochoric temperature rise, process d  a 

 

  









2

1
121

V

V
lnnRTTTCQ Vin  

Putting this together for the efficiency we have 

 

 

  



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

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



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2

1
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2

1
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V

V
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V

V
lnTTnR

Q

W

V
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S  

Divide top and bottom by 








2

1

V

V
lnnR  

 

   
 

1

2

1

21

21

T

V
V

lnnR

TTC

TT

V
S





  

 

And then divide top and bottom by T1 
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 

2

1
1

21

1

2

1

1

V
V

lnnRT

TTC

T
T

V
S 





  

This gives us the Stirling efficiency in terms of the Carnot efficiency; 

 

C
V

C

V
S

V
V

lnnR

C

T
T

V
V

lnnR

C

T
T






2
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2

2

1

1

2

111

1












 



  

 

From this result we can immediately see that the efficiency of a Stirling engine  is 

lower than the efficiency of a Carnot engine running between the same two 

reservoirs.  

Further, if we recall that for an ideal gas nR
s

T

U
C

V
V

2













 where s is the number of 

degrees of freedom (3 for a monatomic gas, 5 or 7 for a diatomic molecule depending 

on whether it is rigid or vibrates respectively) 

 

    

C

C
S

V
V

ln

s





2

12

1

  

 

The Stirling engine will perform better for a monatomic gas. 

 

The real world. 

It is time to signal a note of caution after the foregoing analysis. We have looked at four 

cycles, the ideal Carnot cycle, the Otto, Diesel and Stirling cycle suggesting that the 

latter three are more like real engines. In many ways of course they are except for one 

big difference. Any real engine operates with losses or dissipation not included here in 

our analysis, sometimes between more than two heat reservoirs, with leaky valves and 

with friction in the moving parts and the Otto, Diesel and Stirling cycles as analysed 

here were themselves idealisations, that is, as approximations to real cycles. Clearly the 
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analysis of a real engine through thermodynamics is a difficult and involved task. What 

has been presented here is a way of approaching the tasks by breaking the job down into 

manageable pieces. It has also been very useful practice at thermodynamic analysis. 

 

Real refrigerators, again operate on irreversible cycles and are difficult to analyse 

theoretically. They use a working substance, the refrigerant, that must be a vapour at the 

operating temperature of the cold reservoir otherwise the operating medium would 

condense. This is the reason for many of the exotic refrigerants that have been used over 

the years. 

Refrigerant Chemical  BP 
0
F BP 

0
C 

Ammonia NH3  -33.35 

Freon `12 CCl2F2 -21.6 -29.8 

DichloroDiFluoroMethane C2Cl2F4 38 3.3 

 CCl3F 75.3 24.1 

 C2Cl3F3 118 47.8 

 

Chlorofluoro carbons, CFCs have dominated but are now recognised as environmentally 

unacceptable. In the 19
th

 century ammonia was the refrigerant of choice allowing 

perishables such as fish to be transported around the world. 

 

Refrigeration is usually achieved by expansion of the saturated liquid through a valve, 

the temperature and pressure being both lowered significantly in the process, with up to 

10 atm drop in pressure producing a mix of liquid and vapour in co-existence. For this 

to work using the Joule Kelvin effect a positive Joule Kelvin coefficient is necessary it 

is to be recalled that there is an inversion temperature below which the coefficient will 

be negative and an expansion will cause a rise in temperature. Clearly the gas cannot be 

used in such a refrigeration cycle below the inversion temperature. 


