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5 ENTROPY. 

We have seen two empirical statements of the second law based on empirical observation.  

(i) The statement due to Kelvin and Planck is that it is impossible to construct a 

device whose only action, when operating in a cycle, is to extract heat from a heat 

reservoir and to deliver an equivalent amount of work. 

and 

(ii) The statement due to Clausius that it was impossible to construct a device 

whose only action, when operating in a cycle, was to transfer heat from a cold to a 

hot reservoir.  

  

We now need to look at this law and try to get it onto a more mathematical footing. This will 

involve the discovery of a new state function, entropy, and an examination of its basis around 

the exchange of heat between bodies. To do this we will need to start by continuing our study 

of the ideal (reversible) engine operating between two heat reservoirs. 

So far we have considered engines operating on idealized cycles however real machines will 

interact with the environment to a lesser or greater extent as they exchange heat with many 

different bodies at many different temperatures. To investigate this exchange of heat we begin 

with reversible cycles before moving on to irreversible cycles. 

 

Clausius’ Theorem. 

Now that we have the tool of the Carnot cycle to aid understanding we may consider heat flow 

around a general cycle by starting with the reversible cycle as represented by the Carnot cycle. 

 

We know already that for a Carnot cycle the heat flows and thermodynamic temperature are 

simply related as 
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We now envisage an arbitrary thermodynamic system undergoing a cycle including both heat 

flow and work processes and constrain all of the heat flows to be from a reversible Carnot 

engine operating from a hot reservoir at temperature T0 being used to drive an arbitrary system 

at temperature T by supplying incremental heat Q(T) at that temperature to the system and 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 107 

causing it to do incremental work WSys. This will involve the Carnot engine extracting 

incremental heat Q(T0) from the reservoir and doing incremental reversible work WRev all 

shown in the figure. 

NB. This can be generalized to a system where the temperature varies around the cycle by 

using multiple Carnot engines supplying the heat to the system at the appropriate 

temperature at any point around the system cycle. 
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Inside the dashed lines there is a composite system made up of the system under 

consideration and the Carnot engine whose inputs and outputs are dQ(T0), dWC and dWSys. 

 

The quantities shown are then 

 

1. dQ(T0) is the heat received from the reservoir by the Carnot engine during one or 

more complete cycles of the Carnot engine. 

 

2. dQ(T) is the heat rejected in one or more complete cycles of the Carnot engine 

consistent with constraints set by the requirements of the Carnot cycle, 
T

)T(dQ

T

)T(dQ


0

0  

 

3. dWC is the work performed in one or more complete cycles by the Carnot engine 

consistent with constraints set by the requirements of the Carnot cycle, 

)T(dQ)T(dQdWC  0  

 

4. dWSys is the increment of work performed by the system as it executes a cycle 

 

First we note that dQ(T0), dQ(T) and dWC are cyclical quantities wrt the Carnot engine but they 

are incremental quantities wrt the system. 

 

First with regards to the Carnot engine we use the first law to obtain; 

 

       00  TdQTdQdWC  

 

From our understanding of the Carnot cycle and the thermodynamic temperature scale; 
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Using these two equations we can eliminate  0TdQ  and obtain 
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We next find the net work of the combined system and Carnot engine for one complete cycle  

 

   

cycle
System

Sys

cycle
System

CNet dWdWW  

The second term on the RHS relates to dQ(T) via the first law applied to the system alone 
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System

Sys TdQdW  

 

We can now make substitutions to obtain 
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Which simplifies to 

 

   
 



cycle
System

Net
T

TdQ
TW 0  

 

If WNet is positive we have a compound system that violates the Kelvin-Planck statement ie.a 

device would exist whose sole effect is the exchange of heat with a single reservoir and the 

creation of an equivalent amount of work. 

If WNet is negative or zero no principles are violated as we can always convert work 

completely to heat as did Joule in his experiments demonstrating the first law. 

Ie. 
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Since T0 is positive we have proved THE CLAUSIUS INEQUALITY  
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Whenever a system executes a complete cyclic process the integral of 
T

Q
 around the cycle 

is less than or equal to zero. 

Otherwise stated as 

    
 

0

cycle
System T
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For a reversible system cycle which we can go around in either sense with only the sign of the 

heat flow changing we have 
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This must mean that for a REVERSIBLE cycle 

 

     0
Cycle

R

T

dQ
  REVERSIBLE 

Then  

     0
T

Qd
   IRREVERSIBLE 

 

We note that the quantity 
T

dQR  is behaving exactly as a state function where its integral over a 

cycle sums to zero, cf U , H , P and V 
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Entropy 

The significance of the Clausius inequality is still not apparent so let’s consider a reversible 

cycle, YR 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For an arbitrary reversible cycle such as the one shown above, we can write the integral in two 

parts one for the upper and the other for the lower path such that 

 

    0
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Therefore, 
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But the lower and upper paths are any arbitrary paths connecting i to f and therefore the path 

integral of  
T

dQR  is path independent (unlike the path integral of dQ alone which does depend 

on path) and this means that  
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T

Qd R  defines a new function of state (Like , P, V, U etc). 

 

We call this function of state THE ENTROPY,   S. 

 

     
f

i

R
if

T

Qd
SSS  

 

The state function S is a unique property of an equilibrium state. 

 

It should be noted that with this definition only ENTROPY DIFFERENCE is unique. That is 

to say, entropy is only defined up to an arbitrary constant which could be taken to be the 

entropy of a reference state. 

 

   ref

i
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T
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S has units of JK
-1

. 

 

Looking at differential change 

 

   
T

Qd
dS   and is a perfect differential (it must be as it is a state 

function!). We now proceed to demonstrate this using our definition of a perfect differential. 

 

Example. Ideal Gas. 

First Law states  PdVQddU R   (assuming a reversible process) 

 

It follows that 

 

dV
T

P

T
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T
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and from our equation of state we have 

 

PVU
2
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So re-writing 
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V
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T
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2

3
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V
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We see that we can use V and T as the natural variables of S (if V and T are both held constant 

the entropy is constant) and we can test for perfect differential status, 
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Therefore dS is a perfect differential. 

As we have already found S has V and T as natural variables and we may therefore write, 

 

dV
V

nR
dT

T

nR
dV

V

S
dT

T

S
dS

TV




























2

3
 

 

T

nR

T

S

V 2

3













    )V(fTlnnRS 

2

3
 

and  



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 114 

 

V
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Both of these together give 

 

constVlnnRTlnnR)T,V(S 
2

3
 

 

For 1 mole of gas, n = 1 

 

S  s
n

S
  the molar entropy,   CV   R

n
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2

3
 cv the molar specific heat 

capacity at constant volume 
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Examples of calculating S 

 

Ex 1.   

 

 

 

 

 

 

 

Sf – Si is uniquely defined as both states are equilibrium states. To calculate it we must consider 

any reversible path that will take us from i to f. 

 

 

 

 

 

 

 

 

Make the change from 20 to 100
0
C in infinitesimal steps, 

 

T

dT
mC

T

Qd
dS P

R   

 

Note that the changes are occurring at constant pressure. 

 

Suppose the water has a mass m = 1kg 
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NB. The temperature must be converted into degrees Kelvin for the 

calculation!! 

CP(H2O) = 4.2  10
3
 JK

-1
kg

-1
 

 

116373

16293

113 101410241
2
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.

.
ln.  

 

It is also instructive to calculate the change in the entropy of the reservoir where the 

temperature has remained constant. 
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NB. Measurements of specific heats provide experimental methods for determining S. 

 

Ex.2 

5kg of water at 10
0
C is mixed adiabatically with 2kg of water at 40

0
C . 

First, what is the final equilibrium state? We need to find the final temperature. 

The net heat change must be zero as the mixing is adiabatic.  

Let the final temperature be Tf 

016313102421628310245 33  ).T(.kg).T(.kgQ ffnet  
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Ex.3 

1kg of water is cooled from 40
0
C to 20

0
C, by placing a beaker outside in the garden, calculate 

S for the water and the surroundings. 
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For the surroundings the temperature remained constant at 293.16K 
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Ex. 4 

Mix 1kg of water at 10
0
C with 5kg of water at 30

0
C in an adiabatic enclosure 

(i) What is the final state?  

 

The final state is 6kg of water at Tf. There is no heat input so; 

 

Q(1kg, 283.16K) = )T.(. f 1628310241 3  

 

Q(5kg, 303.16K) = )T.(. f 1630310245 3  



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 118 
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In summary, calculating S from heat flows eg. 
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In general the specific heats will vary with temperature which complicates things if the 

variation is too large over the range of the temperature change. However we have ignored 

this effect. 

NB. Since Entropy is a function of state it will change if the state 

changes with or without a flow of heat 

 

Example Joule free expansion. 

We have met this before; 

 

 

 

 

 

 

 

 

Where a gas is initially confined to one half of an adiabatic chamber and the partition is 

suddenly broken to allow unhindered expansion into the whole chamber with no flows of 

V V 
2V 
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heat. This is an irreversible process with no heat flows and yet there will be a change of 

entropy. 

 

i

f

i

f
if

V

V
lnR
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T
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2

3
  

Tf = Ti  (no heat flow and no work so no change in internal energy). 

02
2

 lnR
V

V
lnRS  

S has increased without any heat flow. In fact all of the examples we have seen so far have 

involved an increase of S from initial to final state value. And all examples have been 

irreversible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

What are we able to say about entropy change in irreversible processes? Consider the PV 

indicator diagram with the initial and final states i and f. There is shown an irreversible path 

from i to f and a reversible path from i to f. 

 

From the Clausius inequality we can say that  
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NB. When we use the Clausius inequality we need to distinguish between reversible and 

irreversible processes and the temperature used in the inequality. If the process is 

irreversible then the temperature is that of the external source supplying the heat to the 

system, Text , whereas in the case of a reversible process Text = TSys = T and no distinction 

is made. Recall that in the definition of dS based around this it is reversible heat flows 

that are the basis of  the definition! 

 

It follows that 
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Whence for any change between equilibrium states i and f 
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Consider a thermally isolated system, Q = 0 

 

Then clearly from the above inequality 

 

 0S  0dS   (Thermally isolated system) 

 

For a reversible change 

 

0S  0dS  (Reversible change in thermally isolated 

system) 
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In summary;  

 

1) The entropy of a thermally isolated system can only increase or 

remain constant. 

2) Spontaneous changes in isolated systems lead to an increase in 

entropy. 

3) In a thermally isolated system, S will tend to the maximum value 

possible 

4) In a totally isolated system, S will tend to the maximum possible 

value at fixed U ie. U will remain constant. 

 

These are all; 

ENTROPY STATEMENTS OF 

THE SECOND LAW OF THERMODYNAMICS 

 

Clearly, we should consider the combination of our system (under study) plus the 

surroundings plus everything else as a closed and thermally isolated system and therefore, 

for any change that occurs,  the grand statement can be made that 

 

SUniverse  0 

 

And the equality part of this statement only pertains if the change is reversible. 

 

Ex. 
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A mass, m, of water at an initial temperature, Ti , is placed in thermal contact with a 

reservoir at temperature TR and the water temperature approaches that of the reservoir 

irreversibly until it reaches a final temperature, Tf = TR . 
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And 
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We can say nothing about the respective signs of the entropy changes as we do not specify 

whether Ti is greater or less than the reservoir temperature although we can say that they 

have opposite signs. It is important to stress at this point that they do not have equal 

magnitudes (entropy is not a conserved quantity!!). 

 

We seek a more general statement. 
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This is in the form 

 

     XmCXlnmCS PPUniverse  1  

 

where 
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T
X 1  

 

Note that  

for cooling, 1
f

i

T

T
 and X < 0 is negative,  

for warming, 1
f

i

T

T
 and 0 < X. < 1 

Using McClaurens series expansion,  .......
xx

x)xln( 
32

1
32

 

 





























 ......

XX
mCX.......

XX
XmCS PPUniverse

3232

3232

  

 

Note, SUniverse has increased only when X > 0 ie only with the water warming  

ie. Is not independent of the sign of X! SOMETHING WRONG HERE??? 

 

This is now our mathematical expression of the second law of thermodynamics previously 

formulated as statements grounded in empirical observation.  

How does the inequality, 0S  relate to those previous statements. 

a) Kelvin’s statement was that heat could not be converted into work with 100% 

efficiency, or equivalently that some heat must always be ejected as waste from the 

engine into a cold reservoir. We can relate this to the new form of the second law by 

asking what happens to entropy if we can convert heat to work with no waste heat being 

rejected to a cold reservoir. The heat has come from a hot body and therefore involves a 

decrease in the entropy of that body (the hot reservoir) 

0
1

1

1





T

Q

T

dQ
S sRe   

(where we have used the same notation as in our discussion on engines).  

For the system operating in a cycle 

    0
cycle

Sys
T

dQ
S  



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 124 

Ie. if there is only work then performed which of itself has no effect on the entropy of 

the system or universe the second law as an inequality is violated, entropy has been 

reduced.  

   0
1

1

1





T

Q

T

dQ
SSS SyssReUniverse   

We can see now that the “waste” heat rejected into the cold reservoir in any real engine 

is absolutely necessary in order that the second law is complied with ie. It acts to raise 

that body’s entropy by an amount 
2

2

2 T

Q

T

dQ
S 


  such that  

0
2

2

1

1 
T

Q

T

Q
Sunivese   

Ie the entropy is increased and because the heat came from a hot body and was 

rejected to a colder body, from our measure of entropy where the temperature of the 

body appears in the denominator, this allows a smaller amount of heat Q2 < Q1 to be 

rejected to the colder body but still for there to be a greater entropy increase to allow full 

compliance with the second law and yet leave some energy, Q1 – Q2 from the hot body 

to be available to perform useful work, W. 

 

b) Clausius’ statement that heat could not flow spontaneously from a colder to a 

hotter body can be related to the new entropic second law by imagining the scenario, 

breaking Clausius’ statement, where a glass of water is placed in a warm oven and ice 

forms spontaneously as the colder body, the water , loses heat to the warmer body, the 

oven. The water as it cools loses heat and will see a decrease in its entropy 

OHOH
OH

T

Q

T

dQ
S

22

2


 


  whilst the warmer oven receiving the heat will see an 

increase in its entropy of 
OvenOven

Oven
T

Q

T

dQ
S


 


 . We see immediately that the 

occurrence of the temperature in the denominator of these expressions means that the 

same amount of heat has transferred from the water and to the oven and yet the negative 

change in entropy for the colder water is much larger than it is for the warmer oven and  
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The second law in its entropic form is again violated. Heat cannot therefore leave a 

colder body and flow to a hotter body as this will inevitable lead to a decrease in 

entropy in contravention of the entropic forms of the second law. 

As a thought experiment we could consider the warming of the water reversibly by using 

the heat output of a Carnot engine taking an infinitesimal heat, dQ1 from a heat reservoir 

and delivering an infinitesimal amount, dQ2 to the water whilst doing work dW and 

running many cycles, see diagram below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a Carnot engine we know 

 

   
2

1

2

1

T

T

dQ

dQ



   

1

1

2

2

T

dQ

T

dQ
  

 

therefore 

 

C 

Water 

T2 

Reservoir, T1 (100
0
C) 

dQ1 

dQ2 

dW 
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   0
1

1

2

2 
T

dQ

T

dQ
 

 

   012  dSdS  

 

 0UniversedS     0dSSUniverse  

In that example we required that the initial and final states are equilibrium states. We are able to 

relax this requirement slightly. 

Suppose a system is not in complete equilibrium but it can be conceptually subdivided into 

small but macroscopic parts each of which can individually be regarded as in equilibrium at it’s 

own temperature, pressure and volume. 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the above, the system is in local equilibrium but will not reach total equilibrium until the 

entire system is uniform including T and P. 

 

We can still define initial values of quantities like U and S as follows 

 

   
i

iinitial UU    
i

iinitial SS  

 

Our recently discovered results will then apply to the spontaneous irreversible change whereby 

the temperature and pressure come to uniformity. 

P 

T1 

T0 

Ti , Pi , Vi Ti , Pi , Vi 

Temperature gradient Pressure gradient 

Metal Bar Fluid 
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ie. we will still have; 

 

  0 SSS if   

 

We can use the function of state S to re-express the first law in its infinitesimal form as; 

 

   PdVdQdWdQdU RRR   

And this can be re-expressed as 

 

   PdVTdSdU   

 

But the second of the two expressions of the first law contains only functions 

of state or their changes, dU, dS, dV, T and P! 

 

This is known as  

 

THE THERMODYNAMIC IDENTITY 

 

Therefore this equation is an identity for any two equilibrium states infinitesimally close.  

All differentials in this identity are now perfect differentials, independent of 

path! 
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 U = U(S, V)  
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Or we can look at it another way 
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   dV
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 S = S(U, V)  

and 
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1
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
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Relations such as these relating partial differentials to physical quantities will often prove 

useful as we shall see when looking at the physical meaning of entropy. 

 

Extensive and Intensive variables. 

S, U and V all depend on the size of the system (number of moles) for a given 

equilibrium state. If the size is doubled then each of S, U and V is also doubled. Variables that 

have this property are called EXTENSIVE thermodynamic variables. 

Quantities such as P and T are independent of system size and are called 

INTENSIVE thermodynamic variables. 

 

It is possible to show that AT EQUILIBRIUM,  for a TOTALLY ISOLATED SYSTEM, the 

temperature and pressure (any intensive variables) must be UNIFORM throughout the system. 

 

Ex. 

 

 

 

 

 

   

)V,U(S)V,U(SSSS 22211121   (All are extensive variables) 

 

  ttanconsUUU  21    ie, U is extensive 

 

1 2 

U1 U2 

Totally Isolated 

Heat Conducting Walls 
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For equilibrium S must be a MAXIMUM even though energy exchange can occur through the 

walls. 

  021  dUdUdU   21 dUdU   

 

We may then say that 

 

0
2

2

1

1

1

2

1

1

1


























U

S

U

S

U

S

U

S

U

S
 

Or equivalently 

  0
11

21


TT

   21 TT   ie. T is intensive. 

Suppose 1 and 2 are at the same temperature but are separated by a moveable piston 

 

 

 

 

 

 

 

 

)V,U(S)V,U(SSSS 22211121   

 

ttanconsVVV  21  

 

021  dVdVdV   12 dVdV   

 

We may then say that 
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Or equivalently 
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V1 V2 

Totally Isolated 

Heat Conducting Walls 
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  021 
T

P

T

P
    21 PP   (it is intensive as we also 

found for T.) 

 

 

THE MICROSCOPIC INTERPRETATION OF ENTROPY 

So far we have developed the idea of entropy from an empirical viewpoint beginning with the 

statements of Clausius and Kelvin-Joule which were based on observation, heat doesn’t run 

from cold to hot objects and work cannot be obtained from heat with 100% efficiency. From 

this we have found a new state function whose value can be determined (up to a constant) from 

measurements of specific heat; 
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By measuring either CV or CP we may determine S by integration. 

 

What we need to ask now is whether there is a microscopic understanding of entropy analogous 

to our microscopic understanding of temperature and its relationship to microscopic kinetic 

energy. We would like to have an intuitive understanding of such features as the fact that for an 

isolated system S always increases or remains constant but never decreases.  

Ludwig Boltzmann was the first to give such a microscopic explanation of entropy. We may 

express Boltzmann’s conjecture in this way;  

 

Entropy is a measure of the MICROSCOPIC probability of finding the system under 

study in a given MACROSCOPIC equilibrium state. 

 

By probability we mean here a number that is proportional to the number of distinct ways a 

system can arrange itself microscopically to achieve a particular macroscopic equilibrium 

state. 
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We can put this idea on a firmer footing with the help of an example. Imagine a simple fluid or 

gas system with fixed volume, V and internal energy, U. V and U are independent state 

functions and as such are sufficient to define a macroscopic equilibrium state uniquely. Let us 

introduce  

 

(U,V) = number of distinct microscopic arrangements of the system giving the same U and V. 

If that is so then the entropy S is some function of (U,V). 

 

    )(f)V,U(S   

 

To have a better understanding of what is signified by , consider the gas in question to be 

dilute. Microscopically the state of the gas is described by giving the values of the position 

and momentum of every molecule. If the position or momentum of a single molecule is 

altered we change the microscopic state of the gas. 

 

We begin by asking how many ways there are of arranging the positions of the atoms of the gas 

in a volume V. 

To begin to answer this we need to give the atoms some choices. To do this, imagine dividing 

up the volume V into little cubes or cells of side length X. The number of cells is then 

     
 3X

V
N


  

 

This is the number of places we can put one molecule. The next molecule can also go into N 

places and so on giving us 
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Next, we need to look at the number of ways the momenta can be arranged. 
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Recall, 

   
m

p
N

m

p
NmvNU rms

222

1
2

2

2   

and 

    
N

U
mprms 2  

The momentum is to be spread over a region of side prms in momentum space. As with our 

earlier argument about position and arrangements we can divide this momentum space up into 

infinitesimal cells or cubes of side p and the number of choices is 
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p
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p
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And the number of arrangements is 
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The total number of arrangements is the product of these two numbers 
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Up until now in this argument we have assumed that all of the particles are distinguishable 

which of course they are not 

Ie. we have treated arrangements like the six shown below as distinguishable, that is, as 

separate microscopic arrangements. 
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They are clearly identical and because we have three boxes and 3 numbers there are  

3! = 6 of these equivalent arrangements. For N identical particles we should divide our first 

naive answer by N! 

 

  
 

N

rms
Identical

pX

Vp

!N
)V,U(
















3

3
1


  

 

The next problem to be dealt with is how can we find what the function f() should be like in 

order that it gives us the entropy or something with similar properties. One important property 

that we know is that S is extensive ie. additive. 

 

 

         21 UUU   

 

         21 VVV   

 

 

   )V,U(S)V,U(S)V,U(S 222111   

 

But, also in the above diagram we know that each of the two subsystems has its own number of 

arrangements, 1(U1, V1) and 2(U2, V2). We also know that for the combined system the 

number of arrangements is given by the product! 

 

   21   

 

Together with  

   )(f)(fSS)(f)(fS 212121    

 

The function we seek then has the property 

   )(f)(f)(f 2121    

 

We can suggest a function that assigns this additive property to a product as we know that  
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   blnaln)abln(   

More generally we conclude that  

    S = C2ln + C1 

where we include the constant C1 to give us the most general form. 

 

Checking the properties are those of an extensive quantity, 

 

     SClnCClnlnCSSS  1212121221   

 

As we know S to a constant we can choose to define S = 0 when  = 1 and thus C1  0 

 

ie. We can make the arbitrary choice that S is lowest when there is only one arrangement 

that will give rise to the macrostate! 

 

This still leaves us to find C2. 

 

The argument for the form of  f  can be made in a mathematically more formal way and this 

is presented in an appendix to this set of notes. 

 

To find the constant C2  we return to the dilute gas 
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We can use the fact that  

 

NNlnN!Nln   

 

And that   
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We found previously that 
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For 1 mole  
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Gives us C2 
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We can see now why S may increase even in the absence of heat flow when the system can 

spontaneously pass from a LESS PROBABLE (small ) to a MORE PROBABLE (large ) 

state. It may never find its way back to the less probable original state and continue evolving to 

states which are available with more ways of achieving them. 

 

This microscopic explanation of entropy due to Ludwig Boltzmann was never accepted in 

his lifetime and this was understood to be the main reason behind is suicide. 

 

Today on his tombstone are inscribed the letters  

 

     S = klogW 

 

The Boltzmann microscopic theory of entropy should offer predictions that fall into 

agreement with the macroscopic theory found earlier 

 

Consider as an example JOULE EXPANSION 

 

Take 1 mole  of an ideal gas (N = NA) in a box divided into two identical halves each of value 

V. Start with all of the gas in the left hand half of the box confined by a membrane with a 

vacuum to the right. Break the membrane to produce a free expansion into a volume 2V 

 

 

 

 

 

 

After the expansion the number of arrangements of the atoms is changed from (V) to (2V). 

The NA atoms each now have twice as many choices than initially as they have twice the 

volume they may occupy 

)V()V(.........)V( AN  222222   

 

Before After 
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  )V(SlnNk)V(S AB  22  

 

And finally the change in entropy is 

 

 222 lnRlnNk)V(S)V(SS AB   

 

But from the earlier macroscopic argument we had, 

 

 22
1

2 lnR
V

V
lnnR)V(S)V(SS   

As n = 1 and V2 = 2V1 . 

Thus, the microscopic argument reproduces the same result as the macroscopic argument as 

required. 

If, for a given equilibrium state, there are only a small number of microscopic arrangements 

possible that will reproduce the macroscopic state then it is extremely unlikely that the 

macroscopic state will be found as compared with a macroscopic state that can be reproduced 

by many alternative arrangements of microscopic states. The spontaneous increase in entropy 

of an isolated system is the change of state from a less probable arrangement to a more 

probable arrangement. 

Since, as the system evolves to a more disordered arrangement the greater the potential number 

of equivalent microscopic arrangements becomes, we can see that entropy is greater 

as the disorder increases and that therefore entropy can be viewed as a 

measure of disorder. In other words the entropic declaration of the second law 

     0S  

Implies that  

 

(i) Disorder has a tendency to increase  

and that  

(ii) Information tends to be lost. 
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Ex. 

The specific heat, CP , of the alloy -brass, an alloy of 1:1 Cu:Zn has been measured as a 

function of temperature. At low temperatures the -brass crystallizes forming an highly ordered 

arrangement as it forms a body centre cubic crystal structure; 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This abrupt increase in order and therefore reduction in entropy as the temperature is reduced 

shows itself in a peak in the measured CP. 

 

   16
2

1

 JK
T

dT
CS

T

T
P  (measured) 

Zn 

Cu 

Cu Cu 

Cu 

Cu 

Cu Cu 

Cu 

Zn 

T1 T2 
T 

CP 
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For the ordered crystal each atom has a choice of only 
2

AN
 sites, as atoms of the other type sit 

on the others by necessity. If the atom could sit on any of the sites (non-crystalline form of -

Brass) then the choice is of 2
2

AN
 sites then 

  eCrystallin
N

lineNonCrystal
A  2  

 

    22 lnkNlnklnkS BAB
N

B
A    

 

  17652  JK.lnRS  

 

So, the increase of specific heat as the sample is heated signals the increase in disorder as the 

crystalline structure is lost and the consequent increase in entropy. 
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The Carnot Engine Revisited. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, with our new state variable S we may gain insight into previously studied systems. For 

example the Carnot cycle.  

Other state variables may be represented on diagrams equivalent to the P-V diagram and the  

T – S diagram offers an interesting way to represent the Carnot cycle whose P-V diagram is 

shown above. 
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On the T-S diagram the isotherms are represented by the horizontal lines of constant 

temperature at T1 and T2 and during the adiabatic processes no heat is exchanged and S is 

zero, thus the adiabats are represented by the two vertical lines. 

The area inside the rectangle representing the Carnot cycle on a T – S diagram is  

 STQQdSTdST
S

S

S

S

 2121

1

2

2

1

 

ie. it is the total heat absorbed. By application of the first law and the fact that over a cycle U 

= 0 the area is also the net work done. 

NB. The zero point on the S axis is arbitrary but the origin of the temperature axis is absolute 

where the thermodynamic temperature scale may be used. Consideration of the T-S diagram for 

a Carnot engine also allows us to obtain the Carnot form of the efficiency straight away by 

simple calculation of areas 

 

   
1

2

1

21

11

1
T

T

T

TT

ST

ST

Q

W
E 







  

As obtained previously for the Carnot engine. 
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Appendix 

We can make the argument for the form of f() more formal as follows; 

   )(f)(f)(f 2121    

and therefore we can hold 2 constant and take the partial differential of f(12) wrt 1 

Treating this as a function of a function with 2 a constant the differentiation yields 

   )(f)(f
f //

1212
1








 

And holding 1 and differentiating wrt 2 using the product rule on 2f
/
(12) 

   0212121
12

2





)(f)(f

f /// 


 

writing 

   21y   0 )y(f)y(yf ///  

And thus 

    
y)y(f

)y(f

/

//
1

  

Now writing /fg   

    
y

)y(gln
dy

d

)y(g

)y(g /
1

  

Therefore by integration of the above wrt y 

    1Cyln)y(gln   

Taking exponentials of both sides 

    
y

C

y

)Cexp(
)y(g)y(f / 21   

therefore 

    32 CylnC)y(f   

 


