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8. KINETIC THEORY 
 

We have spent the whole of this course considering equilibrium states and the 

thermodynamics of such states. At the very beginning we derived the relationship 

between pressure, volume and internal energy for a monatomic gas, PVU
2

3
  using 

simple concepts from kinetic theory, that is by considering the collision and 

consequent momentum change of a gas molecule with the wall of its container as the 

source of the pressure of the gas. We also went on to consider energy exchange 

between the walls of the container and the gas and demonstrated that there is a net 

flow of energy from gas to container walls only when the gas was at a higher 

temperature than the container walls and not in equilibrium with the container. This 

was done through an argument due to Jeans. While considering the behavior of the 

microscopic components that make up the gas in these exercises and recognizing that 

any description of the microscopic behavior would need to recognize that the gas 

atoms were all possessing different velocities, it was the case that in these simple 

considerations the average velocity was the required quantity and no knowledge of the 

distribution was needed to obtain physical descriptions of how the atomistic behavior 

influenced the macroscopic state and its variables P and V. The thermodynamic 

equilibrium described by these state functions, that neither varied with time or 

position, is of course hiding a much more transient behavior at the microscopic level 

by virtue of the vast number of particles involved in the macrostate. If we could place 

ourselves at the atomic level all around us our world would be in flux with every atom 

rushing around doing its own thing sometimes in concert with a neighbour with whom 

it collides. As the equilibrium of the macrostate suggests, over time and in space the 

distribution of particle positions does not change. Neither does the distribution of 

speeds and velocities. But any individual particle is constantly changing position and 

velocity (momentum) as it collides with the others. It is this description of a system in 

flux that kinetic theory aims to open up to scrutiny. 
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8.1 Velocity & Speed Distributions 

Maxwell-Boltzmann velocity distribution. 

While the velocities of individual particles are continuously changing with time we 

expect the distribution of velocities to remain constant with fewer high speeds than 

lower and there being equal numbers of molecules moving in any given direction in 

the absence of potential fields and inhomogeneous particle distributions. If there are 

equal numbers of cars to north and south of Newport Pagnell on the M1 and no more 

reason to travel to London than Manchester then we expect the cars to be traveling 

with a speed distribution (more slow than fast and tending to zero at very high speeds 

or at zero speed the law notwithstanding) but the velocity is equally likely to be 

northbound as southbound! 

To describe this complex situation requires some subtle arguments perhaps more 

complex than any we have so far undertaken.  

We begin by introducing distribution functions for each component of the particle 

velocity as well as for the velocity vectors. These functions are f1(vx), f2(vy), f3(vz) and 

f(v) which are defined as follows; 

 

  xx dvvf1  = The probability of finding the particle with an x 

component of velocity lying between xxx dvvandv   or in the velocity interval 

 xxx dvv,v   

  yy dvvf2  = The probability of finding the particle with a y 

component of velocity lying between yyy dvvandv   or in the velocity interval 

 yyy dvv,v  . 

 

  zz dvvf3   = The probability of finding the particle with a z 

component of velocity lying between zzz dvvandv   or in the velocity interval 

 zzz dvv,v   

 

The distribution of velocity vectors is defined through 
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    vdvfdvdvdvvf zyx
 3   = The probability of finding the particle 

with a velocity lying in the cell of volume d
3
v = dvxdvydvz containing v. 

We have allowed for the possibility that the distributions are different for different 

directions. 

By probability we mean the frequency of occurrence of the particular value of 

velocity if the same measurement is performed many times thus if we measure the x 

component of velocity of each of a large number of gas particles then   xx dvvf1  is to 

be understood as the fraction of those particles that had the value of x component of 

velocity lying between xxx dvvandv  . The f would be smooth functions provided 

the interval  xxx dvv,v   is large enough for the measurement to contain many 

molecules within that velocity range. There is a further requirement that the velocity 

component has some value over the range allowed and that then the f must add to one, 

this is the normalization condition and may be written formally as 

 

   11 



xx dv)v(f  

 

   12 



yy dv)v(f  

 

   13 



zz dv)v(f  

 

and 

 

  13  












)v(fdvdvdvvd)v(f zyx


 

 

The function  vf


 depends on all three components ,    zyx v,v,vfvf 


. 

Because the molecules are continually in collision with the walls and with each other 

in an uncorrelated (random) manner we expect the overall probability of having 
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components vx , vy and vz to be simply the product of the three independent 

probabilities; 

   )v(f)v(f)v(f)v(f zyx 321


 

We know that a gas is isotropic, it looks the same in all directions thus the distribution 

of positive x components of velocity must be the same as the distribution for negative 

x components ie. 

 

 )v(f)v(f xx  11  

 )v(f)v(f yy  11  

 )v(f)v(f zz  11  

 

That is they are all even functions and further our choice of the x, y and z axes was 

completely arbitrary and therefore f1 , f2 and f3 must be identical functional forms. 

We can also say that because of the isotropic nature of a gas the function f(v) cannot 

depend on direction and that  f(v) = f(v) where vvvv


 .  

Boltzmann gave an argument that allowed the detailed form of f(v) to be brought out, 

a result also known and derived independently by Maxwell. We begin by noting the 

fact that f(v) is constant in time. This means that although every time a molecule 

collides it will change velocity from velocity v and bin zyx dvdvdv  to velocity v
/
 and 

bin /
z

/
y

/
x dvdvdv  nevertheless in order that the distribution function remains unaltered 

there must be another molecule taking its place in the vacated bin. In other words as 

many molecules enter the bin zyx dvdvdv  per unit time as leave it. This is quite a 

simple but subtle idea and is simply an article of book keeping. It will prove to be one 

of the most useful ideas in this derivation and is known as detailed balance.  

To understand the molecular collision we have the four conservation laws given to us 

by physics; 

(i) Conservation of mass 

(ii) Conservation of energy 

(iii) Conservation of linear momentum 

(iv) Conservation of angular momentum 
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We can use the hard sphere approximation for our molecule, hard implying no 

potential interaction until just before and just after the collision, this allows us to 

express the conservation of energy in terms of kinetic energies before and after the 

collision. We consider a two body collision 

 

 

 

 

 

 

 

 

 

The conservation of kinetic energy then requires 

 

  
2222

2121 2

1

2

1

2

1

2

1 ffii mvmvmvmv   

 

Kinetic energy is also conserved if the molecule collides with a wall. While linear 

momentum and angular momentum are conserved in all molecule-molecule collisions 

they are not conserved in molecule – wall collisions. Mass conservation is trivial in 

that it tells us that m = m. The only non-trivial conservation law that applies to 

collisions with both wall and other molecules is the kinetic energy conservation. 

Newtons laws also hold under time reversal and so any collision    ffii v,vv,v
2121

  

holds the possibility of the reverse collision    iiff
v,vv,v

2121
 . We may see this by 

running the original collision backwards in time and then rotating it through  radians 

about their centre of mass in the plane of the collision as shown below. 
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v1
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In dynamic equilibrium detailed balance demands equal probability of both the 

collision 1 and the reverse collision 3. There is no reason why nature should favour 

one over the other given the laws of physics that we know about. If they occur with 

equal probability this allows the loss of particles with velocities iv
1

 and iv
2

 in 

collision 1 to be replaced by those final velocities in collision 3 and also the gain of 

particles with velocities 
f

v
1

 and 
f

v
2

 in collision 1 is offset by their loss in collision 3 

thus maintaining a strict detailed balance. We now need to make sure that collision 1 

and collision 3 which are both allowed by Newtonian mechanics occur with equal 

probability 

 

v2
f v1

f 

v1
i 

v2
i 

-v1
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-v2
i 

-v2
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-v1
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v2
i v1

i 

v2
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Time reversal 

Rotation twice through  

1 

2 

3 
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In order for collision 1,    ffii v,vv,v
2121

  , to occur we of course require the 

molecules with these initial velocities and the number of pairs of molecules with these 

velocities is proportional to the product of the individual probabilities of finding each 

one separately (they are independent probabilities) ie.it is proportional to; 

       ii vfvf 21  

and the number of reverse collisions, 3,     iiff
v,vv,v

2121
  , is proportional to; 

       ff
vfvf 21  

And the requirement for detailed balance is thus embodied in the equation 

 

           ffii vfvfvfvf 2121   

This ensures that as many molecules pass from iv
1

 due to collision 1 as pass back into 

it due to collision 3 and detailed balance is maintained. 

We may take the log of each side to re-write the condition as 

 

          ffii vflnvflnvflnvfln 2121   

 

This appears to be an additive conservation law for the collision!  

But we know that the only additively conserved quantities in these collisions is mass 

which is constant and kinetic energy (velocity dependent). This allows us to conclude 

that the correct form for lnf(v) must be 

 

     







 2

2

1
mvbavfln  

 

where a and b are constants. A little thought shows this form to have the property 

demanded. The constant a must be kept for the time being as we have not yet formally 

precluded it. We can re-write this form for f(v) by exponentiation to obtain 

 

     





 2

2
mv

b
expAvf  
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We require the probability of very large velocities to be small, otherwise 

normalization would never be possible, and can therefore conclude that b is positive 

to obtain a negative or decreasing  exponential. We can also see that the condition 

       zyx vfvfvfvf   is satisfied by the above 

 

 
22

2222

zyx vvv(bmbmv
AeAevf


  

 

       zyx
bmvbmvbmv

vfvfvfeAeAeAvf zyx 

























 231231231
222

 

 

We may use the normalization condition to find A 

 

      13  












vfdvdvdvvdvf zyx


 

 

    12223

222

 













z

bmv

y

bmv

x

bmv

dvedvedveAvdvf
zyx

 

 

Each of the above three integrals on the right hand side have the same form and are 

known as Gaussian integrals whose value we may look up and find 

 

    


 




 dxe x2

 

 

Using this in the triple integral we note 

 

    
2

bm
  

And using this in the given solution for the Gaussian integral we straightforwardly 

obtain 
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    1
2

3















bm
A


 

 

Re-arranging with A as the subject 

 

    
2

3

2












mb
A  

 

Finally we need to find the unknown constant b.  

We can do this by using the knowledge we have previously gained telling us that the 

average kinetic energy in a gas is related to its temperature as follows, 

 

Tkmv B
2

3

2

1 2   ,  

 

We are able to calculate the average kinetic energy in terms of f(v) using the 

properties of a probability distribution function, 

 

   Tkdvdvdv)v(fmvmv Bzyx
2

3

2

1

2

1 22   

 

   TkvdemvAmv B

bmv

2

3

2

1

2

1 3222
2






 

 

Looking at the structure of the integrand we note that it is possible to re-write each 

component of the triple integral as follows 

 

   x

bmv

xx dvemvAI
x

223
1

2

2

1 


  

 

The above is the component of the kinetic energy due to translational motion in the x 

direction. 
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By use of the observation  

 

222

22

2

1 xx bmv

x

bmv

emve
b







  

we may rewrite the integral of interest as 

 

  x

bmv

x dve
b

AI
x












23

1
2

 

The integral is again, the Gaussian integral whose solution we know 

 

  
2

1

3
1 2















mbb
AI x


 

 

  2
32

1

3
1 2

2

1 








 b

m
AI x


 

 

The entire integral is the sum of three of these (one for each translational degree of 

freedom, I = Ix + Iy + Iz 

 

  Tkb
m

A B
2

32

2

3 2
32

1

3
1








 
 

 

We know A already in terms of b and use this next to obtain 

 

 

  Tkbb
m

mb
B

2

3

2

32

22

3 12
32

1
2

1
















 


 

 

giving for b 

 

   
Tk

b
B

1
  

 

 

We are now in a position to bring everything together to get the velocity distribution 

function 
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






























Tk

mv
exp

Tk

m
mv

b
expA)v(f

BB 222

22
3

2


 

 

The Maxwell-Boltzmann Velocity Distribution 

 

 

We obtained this velocity distribution by using the following physics; 

 

(i) A simple application of detailed balance 

(ii) The conservation laws, specifically conservation of energy 

(iii) Time reversal and rotational symmetry of Newton’s laws. 

 

The dilute gas has zero potential interaction and therefore, for a particular molecule 

the kinetic energy is its total energy, E, Emv 2

2

1
 and we may see the Maxwell-

Boltzmann distribution in terms of the probability that a molecule has an energy, E 

 

   











Tk

E
exp)E(P

B

 

 

The exponential factor is known as the Boltzmann factor or the Boltzmann-

Gibbs factor and it appears throughout all strands of physics (and physical 

chemistry). We note that its appearance here was arrived at in a very general way. It 

will be found in classical systems and in quantum systems as a description of the 

probability that in equilibrium at temperature T the system has energy E. Indeed we 

have already seen it in our discussions on paramagnets and the energy of alignment in 

external magnetic fields. 
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Maxwell Boltzmann Velocity Distribution at T, 2T and 4T
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The Maxwell-Boltzmann velocity distribution is a Gaussian function of the type 

 












 


2

2
0



xx
expAy  as shown above. The Gaussian function as written in this 

general form has three basic parameters describing it as follows; 

 

(i) A is the maximum value at the peak of the distribution,  

(ii) 2, is a measure of its width where the value of the Gaussian has fallen to 

e

1
 of the peak value when (x – x0) = . and  

(iii) x0 is where the maximum occurs.  

 

In the case of the Maxwell Boltzmann distribution it is worth noting that the 

maximum value of the distribution function appears at v = 0 ie. v = 0 is the most likely 

value for the velocity!  

The width of the distribution function is 
m

Tk
v B8
 . 

For values of v beyond 
m

Tk
v B2
 the probability f(v) falls very rapidly to zero. 

m

Tk8 B  

2
3

2 








Tk

m

B
 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 223 

The speed distribution. 

We may want to know something quite different however. For many physical 

problems we will want the most probable speed and it is important to realize that this 

is not zero. To find the most probable speed, where we are not interested in the 

direction at all, requires a further tweaking of the Maxwell-Boltzmann velocity 

distribution function. f(v)d
3
v gives us the probability that the velocity vector lies in a 

cell at v with volume dvxdvydvz and we now use this to find the probability P(v) that 

the speed is vv


  , in the following fashion. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Cartesians the element volume is d
3
v = dvxdvydvz and in spherical polar coordinates 

with the angles defined in the diagram above, this becomes 

    ddsindvvvd 23   

We recall that f(v)d
3
v gives the probability that the velocity lies within that cell. Now 

we don’t care in which direction the velocity arrow in the above diagram is pointing 

as long as it has length v, so keeping this length (v ) fixed we can vary the angles  

dv 

vsind 

vd 

d 

vsin 

d 

 

 

v 

vsind 

vx 

vy 

vz 
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and  and carry out an integration over the appropriate limits to find the probability to 

be in any volume element that lies at a distance (speed) v from the origin 

 

      



2

00

2 ddsindvvvfdvvP  

 

    2
0

0  

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

2
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0

 d  

 

    
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






















Tk
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expv

Tk

m
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The Speed Probability Distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram indicates in a geometric argument how the expression for P(v) 

comes about in terms of f(v). Consider the sphere and its associated shell lying with 

velocity (radius)between v and v + dv. The velocity distribution, f(v) gives the 

probability that the arrow pointing in a particular direction lies in a velocity volume 

element dvxdvydvz. For the speed distribution we only care that the arrow has a length 

v and ends somewhere within the volume defined by the shell whose volume is 
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4v
2
dv. Hence the relationship between P(v) and f(v),    vfvvP 24 . The speed 

probability distribution P(v) still has the Gaussian function in it but it is this time 

moderated by the v
2
 factor that gives the distribution an entirely different shape. 

The major difference between the velocity distribution and the speed distribution is 

the fact that while the velocity distribution has a most probable velocity of zero, the 

probability of having a speed of zero is zero. The v
2
 factor in the speed distribution 

makes sure that this is the case. We can see why it should happen by considering how 

the speed distribution comes about. In terms of the volume of our spherical shell 

between dvvdvvandv 24  containing the gas molecules whose speed is v. As v 

tends to zero the volume of this shell goes to zero even while the probability that a 

molecule has a velocity component at zero tends to a maximum. 

 

 

 

 

             

 

 

 

 

 

 

 

 

 

 

 

 

We can ask “what is the velocity of a typical gas molecule in a gas at a particular 

temperature”. There are several possible answers we might give to this question as 

follows; 

 

Normalised Speed Distribution at T, 2T and 4T
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(i) The root mean square velocity might be given, vrms. This we have 

seen previously when obtaining the relation between temperature, 

kinetic energy and internal energy. 

 

m

Tk
.

m

Tk
vv BB

rms 731
32   

We may check this directly from the speed distribution function by finding the mean 

square speed and taking the square root as follows; 

 dvvPvv 


0

22  
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
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
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2

22
4


  

The integral may be found using the results for the standard integral; 

   dxxexpxI j
j

2

0




 

with the standard results 
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From these results we have   
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(ii) We might also give the mean speed v  defined as 

 

m
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m
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To carry out the above integral in order to find v  we make substitutions as follows; 
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Making the substitution v
2
  x , dv = 

v
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2
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We can find this integral by integrating by parts;   vduuvudv  

 

xu     axedv   

 

  dxdu    axe
a

v 
1

 

 

  dxe
a

e
a

x
xeudv axaxax 

  
1

 

2
0

2
0

11

a
e

a
e

a

x
dxxe axaxax 














  

 

m

Tk

aa

a
v B




841
2

2

2
3







  



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 228 

Alternatively we could use the standard integrals given earlier when finding rmsv  and 

using a similar method write 

  

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The integral we recognize as I3 with 
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m
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  and using 123  nII  for n = 1 and 

the standard integral 
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(iii) Finally we could offer the most probable or mode speed, vm , which is 

the value of v at which P(v) has its maximum.  
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This may be demonstrated by differentiating P(v) wrt v and finding the maximum. 
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8.2 Bouncing off the walls. 

We have already seen how the constant collision of molecules of a gas in equilibrium 

with the walls of the container confining them provides the pressure which pushes 

outwards against the walls. We need to know for a number of purposes about the flux 

of particles onto a surface, that is the number of particles hitting a unit area of that 

surface per unit time. Now that we have the speed distribution function we can obtain 

a precise estimate of this flux which we now proceed to do. 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the sphere shown above in velocity space with a radius v. An annulus 

representing an area of the sphere at an angle between  and  + d wrt a direction of 

interest (the arrow) is shown. This has an area  

 

    dvvdvAannulus sin2sin2 2  

 

Whereas the whole of the sphere representing the molecules traveling in all directions 

has an area  
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Considering that the gas is isotropic and the molecule is equally likely to be traveling 

in any direction there is therefore a fraction F of molecules traveling at a particular 

angle between  dand   with speed, v, given by 

 

   dsinF
2

1
  

 

The number of molecules per unit volume with speed between dvvandv   is 

simply found from the speed distribution function as    vnPvn  . The number of 

these, n(v, ), traveling between  dand   is then  

 

    dsindv)v(nP),v(n
2

1
  

where n is the total number of molecules per unit volume at all velocities. 

 

 

 

 

 

 

 

 

 

 

 

 

We may now specify the direction of interest by asking for the molecules to travel at 

an angle  to the normal to the wall with a velocity v, intercepting the wall in an area 

A. The above diagram shows the situation in 2D. The volume of the oblique cylinder 

swept out by the set of molecules traveling at speed v in time t , is  

 

V = Avtcos 

 

 
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A
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Where cosA  is the cross section area of the cylinder perpendicular to the axis 

The number of molecules traveling in this volume at angle  to the wall with velocity 

v and bouncing off the wall is then given by 

 

   dvF)v(VnP),v(N   

    dsindv)v(nPcosAvt),v(N
2

1
  

We can picture this situation in 3D, choosing our coordinate system such that the wall 

lies in the x-y plane with the gas lying below the wall, z , 0. This situation is depicted 

in the figure below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We are looking for the flux,  , of molecules colliding with the wall (number of 

molecules per unit time per unit area). This will require an integral over all possible 

speeds and all possible angles.  
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  
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n
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To understand the limits on the integrals refer to the earlier diagram of the annulus 

and note that we need only consider  from 0 to /2 to include all forward directions. 

We begin to evaluate the integral by noting and using the definition of the mean 

velocity, 


0

dv)v(vPv  

The integral over angles can be achieved by the substitution cosu   and 




sin
d

du
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This allows us to write the integral as 
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We now have the flux as desired 
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We can use the expression for the mean speed of a molecule in a gas at temperature T 

to get the flux bouncing off the wall in terms of temperature 
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If the gas is an ideal gas with the usual equation of state, PV = NkBT (nR = NkB) then 
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P
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
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4

1
  

NB we have two n’s in the last simplification, the n as representing the number of 

moles of gas in the ideal gas equation of state briefly made an appearance in 

brackets and n that represents the number density of molecules, the one that 

matters for this and subsequent discussion. 

 

8.3 Colliding with other molecules  

(the mean free path). 

 

We can now look at the frequent collisions that must occur even in a dilute gas in 

order that we can speak of mean velocities or distributions or equilibrium.  

These collisions are essential for mass, momentum and energy transport within the 

gas. These microscopic transport processes are closely related to macroscopic 

processes such as diffusion, viscosity and thermal conductivity. If there were no 

collisions the transport of mass, momentum and energy would occur at speeds typical 

of the mean molecular velocity v . They are in fact very much slowed due to 

intermolecular collisions and the speed at which they occur is closely related to the 

frequency of inter molecular collision, something which is defined by a property 

called the mean free path. 

The trajectory of a particular molecule in a dilute gas may look something like the 

schematic trajectory shown below. 

 

 

 

 

 

 

 

 

 

lN 

l10 l9 

l8 

l7 

l6 
l5 

l4 

l3 

l1 l2 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 234 

The trajectory is made up of a series of straight line segments interrupted after some 

length, l, by collision, resulting in change of direction. The actual distance traveled, 


i

lL is considerably greater than the actual distance traversed in real space due to 

this frequent change of direction hence the reduced speed of transport processes. We 

can look at this more closely by defining an average distance traveled between 

collisions, , called the mean free path defined as 

 

    
N

N

i
i



l
  

 

where N is the number of segments and li is the length of free flight on segment i. To 

get a reproducible value for  under given conditions, of eg temperature and pressure, 

a large number of segments would be taken. 

The value of  depends on the size of the molecules or on the range of the forces 

between them, ie they present an area to other molecules within which, if the other 

molecule trespasses it can be deemed to have collided with (felt the influence of) the 

other molecule. We assume the molecules to be hard spheres with a disc of area  

fixed to them so that as they travel on their trajectories they etch out a series of 

parallelepipeds as shown below 
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The diagram shows a molecule represented as a sphere of diameter a sweeping 

out a series of cylinders of radius a.  

Any other sphere whose centre lies within the volume swept out will suffer 

collision. We need to find the number of such collisions with this molecule per unit 

time. To do this, imagine straightening out the tube to estimate its volume. The 

cylinder so obtained has a geometric cross section area,  

 

G = a
2
.  

 

The tube length will be approximately tv giving a total volume  

 

   tvV G  

 

Inside a volume V we will encounter nV other molecules where n is the number 

density of molecules giving a number of collisions 

 

   tvnN GC   

 

for a distance tv  traveled. The number of collisions per distance traveled is then 

 

   G
C n
tv

N
  

 

The distance traveled between collisions is the mean free path, , and is equal to the 

inverse of this 

 

   
Gn


1

  

 

There have been some simplifications made here in order to arrive at a simple 

characterization. These simplifications are; 
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(i) The target spheres themselves are stationary when of course 

they are moving. 

(ii) The hard spheres only collide on contact whereas the forces 

between spheres will have some extent. 

 

If we use the velocity distribution function to take some account of the motion of the 

target spheres then we can get a more precise estimate of the mean free path; 

 

   
Gn


2

1
  

 

To account for the second simplification we use a collision cross section, C in place 

of G . Values of C may be obtained experimentally in molecular scattering 

experiments and can be looked up in tables of properties of atoms.  

We may also speak of the collision frequency, C , as an alternative description of the 

collision process where C is the number of collisions suffered per second  
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v

CC 


 2  

 

or a scattering time S where 
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
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11
  

 

We now have a simple language in which we may describe and discuss molecular 

collisions with  mean free path, , scattering cross section, C , collision frequency C 

and scattering time, S. 
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Molecular Effusion 

In general, the exertion of forces by gas particles on one another via the collisions just 

examined are essential for the ability of a gas to flow in response to macroscopic 

pressure differences, that is, gas molecules in one region are able to exert influence 

over those molecules in an adjacent region via the intermolecular collisions.  

The model we have just developed involving the concept of mean free path may 

however break down in circumstances where the gas is restricted to movement in 

structures whose characteristic dimensions are smaller than the mean free path. An 

example of one such restrictive structure may be eg. a narrow pipe. To deal with such 

situations it will be necessary to drop the concept of mean behaviours such as the 

mean free path and develop other microscopic models. Such a regime is called the 

Knudsen regime. Such a regime may occur in certain common circumstances 

where it is the mean free path that is unusually large rather than a structure that is 

particularly small eg. 

 

(i) We note that  increases as the number density decreases and therefore a 

high vacuum system will always go through a Knudsen regime when the 

vacuum is good enough.  

(ii) The mean free path will also become very large as temperature and 

consequently mean velocity are greatly reduced and systems such as those 

involving liquid Helium and its vapour will pass through a Knudsen 

regime.  
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We investigate the difference between normal and Knudsen behaviour by 

consideration of two chambers connected by a narrow pipe as shown above. 

The thermodynamic criteria for thermal equilibrium between the two chambers is that 

temperatures and pressures must be equal, 21 TT   and 21 PP  . If there were a 

pressure difference between the two chambers the gas in the pipe would undergo 

molecular collisions more frequently from the high pressure side than the low 

pressure side and a resultant force would exist on the gas in the pipe leading to a 

pressure driven flow from high to low pressure tending to equalize the pressures. We 

now consider this arrangement but such that the diameter of the pipe is less than or 

equal to the mean free path in the gas. A molecule will pass into the pipe or not 

according to the prescripts of kinetic theory and if the molecule is within distance  of 

the pipe entrance it will not (on average) be hit by another molecule before it has 

either entered the pipe or missed the entrance altogether. Equilibrium will now be 

determined by the equality of molecular flux onto either end of the pipe. In other 

words we may use our expressions for the flux to find 
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We may substitute into the equation to find the equilibrium condition in terms of 

pressures and temperatures; For example 
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1

T

T
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The chambers in these circumstances can be at different temperatures and pressures 

and the pressure difference in this situation is called the thermomolecular 

pressure difference. This may become a problem when trying to measure the 

pressure of a low temperature gas via a thin pipe connected to a pressure gauge 

elsewhere. 

The entrance or exit of a gas molecule through a hole smaller than the mean free path 

is called effusion in order to distinguish it from macroscopic flow and effusion is a 

useful technique for separating isotopes of atoms with slightly different masses. To 

see how this works we can consider a chamber containing a mixture of two types of 

gas, n1 and n2 at temperature T with a small pinhole exit in the chamber. 

 

 

 

 

 

 

 

 

 

We can write an expression for the number of molecules of species i that impinge on 

the hole from inside the box and escape through the hole in a time, t using our 

previously derived expression 
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We use the expression for the mean speed, 
m
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v B
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  to find the ratio of two types 

of molecule that have escaped in time t as 
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We find the fraction of each species that have escaped as 
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And 
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We have assumed negligible depletion of the molecular densities inside the chamber 

ie. ni does not change substantially with time. 

If molecular species 1 is lighter than molecular species 2 then clearly 

 

    1
2

1 
f

f
 

 

ie. the escaped gas is enriched in species 1 or the gas left behind is enriched in the 

heavier species.  

(NB this does not imply that there is a greater amount of one kind of gas 

compared to the other as this would depend on the starting condition).  

This effect was used by Lord Rayleigh and Ramsay in 1895 to isolate Argon from the 

atmosphere for whose discovery they shared the Nobel prize. The most well known 

use of effusion separation was to separate the light fissionable isotope of Uranium, 

U235 from the more common and heavier isotope, U238 and the process was carried out 

on industrial scale during the Second World War to produce nuclear fuel for the atom 

bomb programme and later for civil energy use. Nowadays the more effective 

centrifugation process is used which was previously unavailable. 
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8.5 Free Path Distributions 

In an earlier discussion on mean free path we saw that during their travels, gas 

molecules would suffer trajectory altering collisions after a variety of free flight 

distances the mean of these being , the mean free path. There is however a 

distribution of free paths contributing to the mean and we now need to investigate and 

establish this distribution of free paths. 

We may imagine having a collection of N0 particles which have each just suffered a 

collision and we then follow their subsequent history through a function of distance, 

 lN  , which is the number of this group of particles having traveled a 

distance l without suffering a further collision.  

It then follows from this definition that the difference    lll dNN   is the 

number of this group of particles which suffer a further collision in 

the interval (l, l + dl ).  

We can make two simple assumptions; 

 

(i)    lll dNN   is proportional to the distance dl . 

(ii)    lll dNN   is proportional to  lN , the number of particles that 

started in the interval  lll d,  . 

 

We may express these two assumptions mathematically as 

 

 lllll d)(CN)d(N)(N    C = constant 

 

Dividing through by dl  we obtain a simple differential equation; 

 

   )(CN
d

)(dN

d

)(N)d(N
l

l
l

l
lll




 

 

Rearrangement gives 
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With boundary condition  lN  = N0 at l  = 0 this has a simple solution 

 

   )Cexp(N)(N ll  0  

 

We can see that 
0N

)(N l  is simply the fraction of particles which have a 

free path greater than or equal to l .  

 

Or alternatively that )Cexp(
N

)(N ll


0
is the probability that a particle 

which has just undergone a collision will survive a free flight of at 

least distance l. 

 

We may now introduce a related probability density,  lP  by identifying   ll dP  as 

the proportion of sample particles starting at l  = 0 which suffer their 

first collision between l  and l  + dl.  

 

Alternatively   ll dP  is the probability that a particle which has just suffered a 

collision will have its next collision between lll dand   

 

Mathematically this probability may simply be written as 
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Hence the probability distribution is simply  
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To determine the constant C we note that the mean free path, , is the average free 

path and therefore 

    ll l deC C



0

  

 

We need to integrate by parts to evaluate the above integral; 
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Using the integration by parts formula 
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C is just the inverse mean free path. 

In summary 

(i)  



l
l


 e)(P

1
 

  ll dP is the probability that a particle that has just undergone a collision will have 

its next collision after traveling a free flight distance between lll dand   

 

(ii)  
ll 

 e
N

)(N

0

 

0N
)(N l

 is the probability that a particle having just undergone a collision will have 

a subsequent free path equal to or greater than  l . 
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Diffusion. 

Diffusion is a process whereby particles (or energy as heat etc.) move from a high 

concentration region to that of lower concentration due to an imbalance in the flux at 

an interface from two opposite directions. We have the flux impinging on a surface as  

 

   vnJ
4

1
  

 

As derived earlier the flux was incident on the inside wall of a container and there is 

nothing coming from the other direction. We could now imagine a virtual wall inside 

a box of gas molecules (or other particles) and if there is a concentration gradient 

across the wall (as shown ) with the concentration diminishing towards the right 

 

 

 

 

 

 

 

 

 

 

 

 

 then n will be greater one side than the other  with LRRL nn    in the above 

example. This will lead to a net flux traveling left to right across the virtual wall and 

the concentration gradient will gradually diminish as a result of this net left  right 

flow. In similar fashion if the temperature varies from point to point then this will be 

eventually evened out by the transport of energy from a region of high temperature 

(high mean velocity, v  ) to one of low temperature (low mean velocity, v ) The high 

velocity particles will impact on our virtual wall from the high temperature side more 

frequently than the lower velocity particles on the low temperature side. Furthermore 

the high mean velocity particles traveling L  R will carry with them more energy 

nRL 

nLR 

n(z) 

z 
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from the LH region to the RH region than vica versa. Both these facts lead to a 

gradual smoothing out of the temperature variation as the RHS warms and the LHS 

cools. We can analyse this process in a more rigorous fashion using what we have 

already discovered. 

1. Inhomogeneities in density, n(z) and diffusion of material 

particles/mass. 

A gas or fluid is said to be in local equilibrium if properties such as density 

(particle number), pressure, temperature, velocity distributions are well defined 

quantities over very small but macroscopic volumes (many thousands of molecules so 

a volume of a few cubic microns say) and if these properties relate to one another via 

an equation of state whereas over larger distances (eg. millimeters) they are allowed 

to vary slowly. These non local inhomogeneities will eventually even out if the 

different parts of the system are in thermal contact with one another and particles are 

allowed to redistribute themselves freely. As we saw above in the example of density 

variation the particles will move from the high concentration region to the low 

concentration region and in the case of temperature variation the faster particles will 

move into the low velocity/temperature region more easily than the slower particles 

can into the high velocity/temperature region. As long as these inhomogeneities are 

not too large then we are able to derive some macroscopic laws describing the 

transport of mass or energy. If we are too far from equilibrium then we are unable to 

use the tools recently developed describing statistical average properties and life 

becomes far more complicated with the tools of computer simulation coming to the 

fore. To consider how the particle density evens out through diffusion we need to first 

develop some tools for our understanding of the random walk process. 
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Random walk of individual particles 

Let us then consider the diffusion process by following a particular molecule and in 

particular following the details of the random walk it will undergo due to the many 

collisions suffered. We have been here recently when we defined the mean free path, 

 of such a multiply colliding particle that moves freely in between collisions at a 

mean speed v . 

 

 

 

 

 

 

 

 

 

 

 

 

We need to find out two things concerning this random walk; 

 

(i) How rapidly does an individual molecule move through the gas? 

(ii) How do we relate this to the gradual homogenization of the gas? 

 

For an individual molecule, after n collisions there will be a net displacement 
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 4321  

 

Now, it is clear that the direction of the vector displacement is equally likely in any 

direction and so we can expect 0nR . It is not however the case that the scalar 

magnitude averages to zero 
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nnnn ............R lllllllll  13121
22

2
2

1
2

222  

 

We can note that in the above summation; 

 

(i) In a random series of collisions there is no correlation between the direction 

taken by a molecule after a collision and the direction taken after the previous 

collision and therefore on average 

 

  0 cosjiji llll     ji   

ie. the angle  between the original and scattered direction is random and averages to 

zero and all of the cross terms vanish. 

 

(ii) The li are statistically identical, ie. the average value of all li must be equal 

therefore 

 

 
222

3
2

2
2

1
2 lllll n....R nn   

 

The average of the square of the free path length is calculated using the probability 

distribution previously derived 
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We can perform the integration by (several) parts as follows; 

Part 1. 

2lu     
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Part 2. We need a second integration by parts to evaluate the new integral 
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We then arrive at 
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The mean square displacement is then 

 

    22
2 nRn   

 

We can convert the number of collisions, n , to the more useful parameter, the time 

elapsed, t, since the last collision, in the above equation where  
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S

t
n


  

 

with 
v

S


  , the scattering time being the time between collisions. 

 

Thus, 


tv
n   and we may write the mean square displacement as 

 

  DttvnRn 622 22
   

 

where the diffusion coefficient D is defined as 

 

vD
3

1
  

 

We note that the root mean square displacement increases as the square root 

of time whereas in free flight it increases linearly with time thus diffusion becomes a 

very slow process for individual molecules. 

 

We may now develop a macroscopic diffusion law. 

 

The diffusion law (Ficks Law) 

We have already noted that a concentration gradient of particles will tend to disappear 

as the particles diffuse simple because more particles will impinge on a virtual wall 

from one side than the other if the wall is oriented perpendicular to the concentration 

gradient. Diffusion governs how this movement comes about and it is true for 

“tagged” particles in a gas (eg isotopically different) , for electrons (or holes) in a 

doped semiconductor , for the dopants that put them there or for solids or fluids 

introduced into other solvents eg. sugar in tea or dye solutions into a bucket of water. 

Having looked at how we may describe the history of an individual particle we now 

wish to describe how variations in density vary in space and time. There exists an 

empirical law of diffusion named after Fick, the scientist who developed it. In 
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simple terms it states that the particle flux (number per second per unit area) due to 

diffusion is proportional to the density gradient and flows in the direction in which the 

gradient is most negative (from high to low concentrations). Fick’s constant of 

proportionality is the diffusion coefficient, D. We can now derive Fick’s law using the 

tools already established. Let us stick with a gas (although many other systems will be 

analyzable in these terms) and assume that there is a majority molecular type 

pervading the volume with some particular tagged particles with a varying density in 

which we are interested. The majority gas merely acts as the carrier gas or 

background medium against which the tagged particles move. Let the density of those 

gas particles vary with z and assume that n(z) is a slowly varying function of z. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The simple model, illustrated above, assumes that molecules from within a distance  

(the mean free path) of this plane cross without scattering and also that the density 

varies slowly over one mean free path. 

This allows us to approximate the number density in the vicinity of the plane ( z = 0) 

by a Maclaurin expansion 
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The flux traversing the xy plane at z = 0 is made up of those coming from below and 

those coming from above and we may use our previously derived formula for the flux 

to give 
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  Flux from below v
z
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The net flux in the positive z direction is the difference between the second and the 

first of these  
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This is known as Fick’s law. 

In our simplified model the relation between v ,  and D is slightly different the 

correct form having been given previously. 

 

   vD
2

1
  

 

Whereas previously we had the correct form,  

 

vD
3

1
  

 

To obtain agreement we need to; 

(i) Allow the particles to make their last collision before crossing, at any 

distance l.  

(ii) Allow the particles to cross the z = 0 plane at a range of angles instead 

of at normal incidence. 
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We note that we may generalize Fick’s Law to three dimensions by the simple 

expedient of replacing the operator 
z


 with the grad operator,  , and to treat Jz as a 

vector, J


. 

    nDJ 


 

 

The magnitude of the vector J


 is now the number of particles passing per unit time 

per unit area through an area perpendicular to the direction of J


 . 

Having obtained a derivation of Fick’s Law we may now derive the full differential 

equation known as the Diffusion Equation which in its one dimensional 

form is 
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Using two concepts; 

(i) Fick’s Law of diffusion. 

(ii) The conservation of particle number. 

 

We may derive the diffusion equation by considering the diagram below. 
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The particle flux flows in at z and flows out at z + z through an area A and we shall 

let N be the change in the number of particles inside the volume Az in a time t. 

The change, N can be related to the change in density inside the volume  

 

   nzAN    

 

We also require that the total number of particles is conserved and therefore N must 

be equal to the number of particles that flow in at z minus the number of particles that 

flow out at z + z which we may express in terms of the particle flux, Jz.as described 

by Fick’s law 
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 )t,z(J)t,zz(JtAN zz    

 

We obtain this with the RHS expressed as a differential 
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The two expressions for N must be equal and so 
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This can be re-arranged  
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And we can take the limit 0t  to give a differential equation 
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Finally by substituting the Fick’s law expression for Jz , 
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we obtain 
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This is the diffusion equation in one dimension that we saw earlier. 

 

A similar derivation can be carried out for the 3D problem to give 
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The above equation, J
t

)t,z,y,x(n





, is in fact a general way of writing a 

conservation law and is known as the continuity equation that in the present case 

expresses the conservation of particle number. If we were considering electrically 

charged particles such as electrons then with J as the current density, 
A

i
J   and  the 

charge density with e the charge on the electron, the continuity equation would read 
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In general the 1D and 3D equations are difficult to solve except in simple cases of 

high symmetry. In the 1D case, with simple boundary conditions the differential 

equation may be solved by using the separation of variables (z and t) technique. 
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8.7 Heat Conduction. 

We have so far related the diffusion equation to a particle concentration gradient but 

there are other ways in which local equilibrium may be disturbed and an important 

way is by having a spatial variation of temperature (or energy density) throughout the 

sample. The diffusion equation can be used to examine this situation with minor 

adjustments. 

The macroscopic law of heat conduction known as Fouriers law can be stated 

as follows in one dimension 
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Where Jz is now the heat flow through unit area per second (J m
-2

s
-1

) and  is the 

thermal conductivity coefficient. This equation may be written in 3D as follows 
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Fouriers law is equivalent to Fick’s law for diffusion of material particles with ,  the 

thermal conductivity coefficient being analogous to D, the diffusion coefficient and 

we may derive an expression for  using an ideal gas. 
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In analogy to our previous derivation of D we consider the temperature, T(z) to 

increase in the positive z direction (rather than n(z) in the previous analysis). We 

know that the mean kinetic energy of a molecule is proportional to the temperature 

and that therefore a molecule at a position  above the z = 0 plane will have a kinetic 

energy )(TkB 
2

3
  and a molecule below the z = 0 plane at position - will have a 

lower kinetic energy, )(TkB  
2

3
. Each molecule will have a heat capacity 
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We have already calculated the net flux of molecules traveling in the plus z direction 

from below the z = 0 plane and those traveling in the negative z direction from above 

the plane z = 0 with the latter carrying greater energy on average (coming from a 

region of higher temperature). There will then be a net flow of energy from plus z to 

minus z through the z = 0 plane or from higher to lower temperature. We may in this 

fashion obtain Fouriers law and the microscopic expression for . 

The argument is made as follows; 

 

Consider the molecules traveling in the z direction with a speed v, at an angle  to the 

z axis and crossing a plane of constant z. They travel a distance  between collisions 

and so travel a distance cos in the z direction between collisions taking with them 

an energy and contributing to an energy deficit in the region they leave. 
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where cm  is the heat capacity of a single molecule.  

If the molecule has velocity, v then this crossing occurs in a time 
v

cos
t


  and the 

molecules occupy a sub-volume AV   of the entire sample therefore involving 

Anv   molecules with nv the number of molecules per unit volume with velocity v.  

We only want to include (for now) the ones traveling at an angle   to the z axis 
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The number of such molecules is easily found. In fact we have done this before when 

finding the flux of molecules colliding with a wall.  

Consider the diagram in velocity space shown below 

 

 

 

 

 

 

 

 

 

 

 

 

A sphere of radius v is shown with the z direction indicated and an annulus 

representing the molecules traveling between  and  + d . 

This annulus has an area  vdvAannulus  2  thus representing a fraction  
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This is the subset of molecules traveling with speed v and at angle .  

Finally we obtain the total number of such molecules traveling in the volume 

 cosA adjacent to the xy plane at z = 0.  
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They then contribute to the total heat flux an amount  
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We need to sum over all the velocities in the positive z direction using the Maxwell 

speed distribution and to average over all  between 0 and . The total thermal energy 

transported across unit area in unit time is then 
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The first integral gives the mean speed v  
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the second averaging over all directions (angles )  
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Substitution of U for cos gives  
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allows us to write the integral 
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Finally we have 
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We write Bm kc
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     BB kork
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5
 for diatomic gases. 
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Thus deriving Fouriers law and giving the advertised result for .  

 

We may now use the previously derived expression for the mean velocity to find how 

 depends on temperature 
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Showing that  is proportional to the square root of the temperature. We will also find 

it instructive to compare heat diffusion with particle diffusion by writing the mean 

free path in terms of the diffusion coefficient D as previously derived to find the 

relation between  and D 
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Having established the Fourier law (equivalent to Fick’s law) we may now turn to the 

heat equation (equivalent to the diffusion equation). 

 

The Heat Equation. 

As for the diffusion equation, to establish the heat equation we need two equivalent 

physical principles; 

 

(iii) Fouriers’s Law of heat conduction. 

(iv) The conservation of energy. 

 

The derivation of the heat equation proceeds from these two in an exactly analogous 

way to the diffusion equation with an extra step in order to relate temperature to the 

conservation of energy. We restrict ourselves to a one dimensional analysis ie. the 

temperature varies in the z direction only. The diagram below, illustrates the situation 

which we are analyzing. The parallelepiped has faces of area A, through which heat 

flows, lying normal to the z direction, separated by a distance, z. This is the only way 

by which heat enters or leaves the volume and we apply the conservation law to this 

small volume over a small period of time, t. To substitute temperature for energy in 

the conservation law we need the mass density, , and the specific heat capacity, cP , 

at constant pressure for the substance being considered. 

 

T(z + z) 

x 

T(z) 
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The only way energy can be added to or subtracted from the volume is through the 

walls of area A and we will denote Q as the heat gained per unit time by the 

substance in this volume requiring the net heat flow into the volume 

 

  outflowheatinflowheatQ   

 

If we write the heat flux in the z direction (heat energy passing unit area in unit time) 

as Jz then we have 

 

  )t,zz(tJA)t,z(tJAQ zz    

 

Rearranging 

 

   )t,z(J)t,zz(JtAQ zz    

 

  z
z

J
tAQ z 



  

 

We can also write Q in terms of the change in temperature, T 

 

  Tc)zA(Q P    
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We may introduce this into the previous equation 

 

  z
z

J
tATzcA z

P 



  

 

This reduces to 

 

  
z

J

ct

T z

P 





 1
 

 

We can turn the left hand side into a partial differential by taking the limit t  0 and 

substitute the form of Jz given by Fouriers law on the right hand side to obtain the 

heat equation as 

 

   
2

2

z

)t,z(T

ct

)t,z(T

P 











 

 

This is sometimes written in terms of the heat diffusivity, 
p

h

c
D




  

 

   
2

2

z

)t,z(T
D

t

)t,z(T h









 

 

Mathematically the heat equation and the diffusion equation are identical differing 

only in the physical properties being represented.  

In 3D the heat equation may be written as 

 

   )t,z,y,x(T
ct

)t,z,y,x(T

P

2







 

 


