
Simultaneity and Time Dilation 
 
 
We derive the equations of Special Relativity from two Postulates:  
 

1. The Principle of Relativity.  All the laws of physics have the same form 
in all inertial frames of reference.  This is an extension of Newton’s 
principle, since he knew only that all mechanical laws are the same in all 
inertial frames.  In particular, we are extending it to the laws of 
electromagnetism.  

2. The Principle of the Constancy of the Speed of Light.  The speed of 
light in vacuum has the same value, ~3 × 108 m s – 1, in all inertial frames, 
irrespective of the velocity of the observer or the velocity of the source 
emitting the light.  This does in fact follow from 1.  Maxwell’s equations 

of electromagnetism yield 
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=c  for the speed of light in a vacuum. 

Hence if 1 is true it follows that 2 must be.  

 

SIMULTANEITY:  How do we measure time?   In order to set up a universal time 
scale we must give meaning to  

 “EVENTS A AND B OCCUR AT THE SAME TIME.” 
 Firstly, take one inertial frame and set up a time scale at one point.  That is, 
put a clock there.  Look at the clock when an event occurs.  The time of an event 
at that point is the clock reading t when the event occurs.  Two events A and B at 
that point are simultaneous if tA = tB.   
 If the two events occur at different places, we need a clock in each place.  The 
time of each event is the reading of the clock at the same place as the event.  So 
we have to read two clocks, and so we must previously synchronise the clocks.  
 Some obvious ways to do this are obviously wrong: 
a) Set the clocks so that they read the same as viewed from A.  This neglects the 

fact that it takes time for light to get from B to A.  Wrong! 
b) Set both clocks at A and then move one clock to B.  This neglects the fact that 

clocks are always perturbed by movement – accelerations and decelerations – 
e.g. a pendulum clock runs faster while it is accelerated. Wrong!  

 
Answer:  We use our knowledge of the speed of light and set the clock at B so 

that viewed from A it is a bit slow, reading tA – L/c, if L is the distance to B.  In 
this way we can install synchronised clocks throughout space.  

Then events occurring at different places are simultaneous when the 
synchronised clocks in the different places read (or record) the same time for the 
events.  

 
BUT – We do not KNOW that events which are simultaneous in this intertial frame 
would be regarded by an observer in another inertial frame moving at relative speed 
v as simultaneous according to his own synchronised clocks.  That would be an 
assumption about the way the world is, rather than the outcome of doing physics.  
And the assumption would be wrong.  



Example:  Lightening strikes both ends of a moving train (inertial frame ).  There 
is an observer  in the observation carriage at the centre of the train, and an observer 

 standing by the tracks (inertial frame ).   

S ′
O′

O S
 Let O observe that his clocks read the same time for the two lightening strikes.  
He concludes that the strikes are simultaneous.  
 Observer O′  is moving with the train, towards the light coming from the front 
strike A and away from the light coming from the rear strike B.  He meets the light 
from the front sooner, and the light from the rear reaches him later. He concludes that 
the two strikes are not simultaneous, that tA < tB.   
 
Which observer is right?  The answer is that BOTH ARE RIGHT.  BOTH HAVE 
MEASURED THE TIMES USING THE SAME PHYSICS.  The concept of simultaneity is not 
absolute and therefore Time is not absolute.  
 
 
TIME DILATION:  How do we measure time?  We construct clocks consisting of 
instruments which – according to the laws of physics – carry out some cyclical 
operation which – according to the laws of physics – takes the same time each time.  
 
Let us construct a clock by bouncing a pulse of light between two plane parallel 
mirrors at separation d.  (We might have laser amplification, but we can ignore that 
refinement).  The round-trip time is  

c
dT 2

0 =  

and that is the period of this clock.  (E.g. for d = 1m, the period is 6⅔ ns, and the 
frequency of this clock is 150 MHz.) 
 
Put this clock vertically in the train, and  for O′  it works perfectly, It obeys the laws 
of physics and keeps good time.  Viewed by O , however, the clock period is T, and  
the train moves a distance vT  in a round-trip, and so the distance the light goes is not 
2d but (by Pythagoras) 
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He will observe that the period T is not T0 but 
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This is Time Dilation.  The observer in  sees the clock in S S ′  as running slow.  Note 
that the analysis is symmetrical.  The observer in S ′  sees the clock in  as running 
slow.   
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Notation: 
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 occur so often in 

Relativity that we use the symbols β and γ in this way a lot.  
 

Thus, e.g., T = γT0 

 
 
 
 
 
 
 
 
 
 
PROPER TIME:  How do we measure the time interval between two events?  Proper 
Time is defined as the time interval between two events measured by an observer for 
whom the two events occur at the same place.   
In the example of the optical clock in the train, the proper time is T0, measured in S ′ . 
The proper time is always the shortest time interval between two events.  Any 
observer for whom the events occur in different places measures a longer interval (γ > 
1).  Time dilates.  Time does not contract. 
 
Experimental Example: Muon Lifetime.   Muons are subatomic particles with a 
half-life (measured at rest in the laboratory frame) of  2.2µs.  They are produced in 
the upper atmosphere (several kilometres high) in collisions between cosmic rays and 
air atoms, with very high energy, and velocities close to 0.99c with respect to the 
Earth.  Without time dilation, they would travel a distance s = 0.99 c × 2.2 × 10–6 = 
650 m in a half-life.  We would detect very few at the surface of the Earth.   
For β = 0.99, γ ~ 7.  So we expect them to travel 7 × 650m = 4.5 km in a half-life, and 
to reach the Earth’s surface in large quantities (as observed).   
 
Theoretical Example: A Spaceship travels at 0.6c relative to the Earth (β = 0.6 and  
γ = 1¼. As it passes Earth, timers are started both on Earth and on the spaceship.  We 
ask (a) when Earth says the spaceship is 0.9 million km away, what does the 
spaceship timer say?  (b) when the timer on the spaceship reads 4s, what does the 
timer on Earth read?    
 
Identify Problem:  These questions are badly posed and ambiguous.  Let  be the 
Earth’s frame of reference and 

S
S ′  be that of the spaceship.  To clarify the questions, 

we identify the events and target variables that are being asked about.  
a)  The two events are the spaceship passing the Earth, and the spaceship passing the 
milestone at 9 × 108 m away.  The target variable is the time interval between these 
events in  S ′
b)  The three events are (A) the spaceship passing the Earth, (B) the spaceship’s timer 
reaching 4s, and (C) the Earth’s timer read. The target variable is the time interval 
between A and C in . B and C are simultaneous in S S ′ . 
 
Calculation:  For (a), the two events occur at different places in  and the same place 
in .  The interval T = L/v = 9 × 10

S
S ′ 8 / 1.8 × 108 = 5 s is therefore not the proper time, 

it is T = γT0.  Therefore, the proper time T0 measured in S ′  is T/γ = 4 s.  
For (b), it is tempting – but wrong – to use the results from (a) and answer 5 s. The 
events A and C do not happen in the same place in S ′  so the interval of 4s is γ times 
the proper time T0 – which is therefore 3.2 s.   



THE TWIN PARADOX:  This has caused more confusion and doubt among 
philosophers – and even some scientists – than any other aspect of Relativity.  The 
confusion is due to failure to clarify the events.   
 
Consider a pair of twins A and B.  A stays on Earth, while B takes a spaceship 
travelling at 0.5c to a planet 10 light-years away ((β = 0.5 and γ = 2/√3 = 1/0.866).  
Immediately on arrival he turns round and comes back.  For A, B’s journey lasts 40 
years and A will have aged 40 years when his twin B returns.  A knows that the 
proper time on the spaceship for the outward journey is 20/γ = 17.3 years.  And the 
proper time for the return journey is also 17.3 years.  So B has aged only 34.6 years.  
B is now younger than his twin A.   
 
The Paradox, the confusion, arises from the argument: “Motion is relative, so we may 
consider what happens from B’s point of view.  He sees the Earth rush away from him 
while he is at rest.  Then the Earth comes rushing back.  So he may argue that his 
twin, A, should be younger than he is.   
 
This appears to be a contradiction at the heart of Special Relativity.  Just Google e.g. 
Einstein and Dingle (a physicist and philosopher), or go directly to  
http://www.mathpages.com/home/kmath024/kmath024.htm 
to see some of the trouble it has caused.  
 
The general answer is that Special Relativity deals only with inertial frames moving 
relative to each other with uniform velocity.  Twin B has undergone acceleration while 
Twin A has not, and that makes the situation not symmetrical.  Twin B has been in 
two inertial frames.  So the paradox says nothing about Special Relativity.   
 
That answer is not sufficient to clear up all the confusion.  Analyses of particular 
situations can help.  Let a clock on Earth emit a powerful flash of light once a year 
(T0), and let Twin B observe these flashes from his spaceship.  B knows that in his 
frame of reference, these flashes are emitted once every T = γT0 = 1.15 years.  In 
addition, the Earth is receding at 0.5 c, so each flash travels 0.5 × 1.15 c light-years 
further than the one before, which takes 0.575 years.  So he sees them at intervals 1.73 
years. Since his outward journey takes 17.3 years, he sees ten flashes.  On the return 
journey, he sees the flashes every 1.15 – 0.575 years = 0.58 years.  During the return, 
17.3 years, he thus sees thirty flashes.  Total 40, so he knows that 40 years have 
passed on Earth.  Twin B has correctly observed time dilation on Earth relative to his 
frames of reference.  He correctly observes 40 years passing on Earth.  He knows that 
A will be older than him.  There is no contradiction. 
 
  
 
 
 


