
Section 1.  
 
Dynamics  (Newton’s Laws of Motion) 
 
 
 Two approaches: 
 

1) Given all the forces acting on a body, predict the subsequent (changes in) 
motion.   

2) Given the (changes in) motion of a body, infer what forces act upon it. 
 

Review of Newton’s Laws: 
 
 First Law:  A body at rest remains at rest, 
   a body in motion continues to move at constant velocity, 
         unless acted upon by an external force.  
 

Note:  This is only true in an inertial frame.   
Example 1:  You are on a train with a ball on the floor.  The train 
accelerates.  What does the ball do? 
Example 2:   You observe the world from a rotating carousal.  All other 
objects are changing their velocities wrt you as you turn.  What forces 
must be applied to them to achieve this?  
 
 

 
Second Law:  A force acting on a body causes an acceleration of the body, 

      in the direction of the force, proportional to the force, 
         and inversely proportional to the mass.  
 
 

Note:  This is only true in an inertial frame. 
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Example 1:  Force parallel to velocity. What does the body do? 
Example 2:  Force always at right angles to velocity. What does the 
body do?  
 
We define the linear momentum vmP rr
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We have two ways 
Inertial method – a
Gravitational metho
dt
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of measuring mass: 
pply a force and measure acceleration  inertialm⇒
d – weight the object (no motion) ⇒  gravm



 Later we will see that they are the same. 
 
Third Law:  To every action there is an equal and opposite reaction. 
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Example 2:    A rocket engine 
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Applications of Newton’s
 
 
Example 1:  Inclined Ramp 
 
An 8kg cart is pulled up a frict
the force if the cart is to move 
  
a) With uniform motion, 
b) With an acceleration of 0.2
  
a)    Resolve forces parallel to 
 
b)    Hence 20sin8 =− mgF o
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 inclined at 20°.  Determine 

 plane.  

  N8.2620sin8 == ogF

o F = 28.4N 



Example 1:   The Pulley 
 
A  weightless cord hangs over a frictionless pulley.  A mass of 1kg 
hangs at one end of the cord and a mass of 2kg at the other. Calculate 
a) the acceleration of the masses, 
b) the tension in the cord, 
c) the reaction (the upwards force) exerted by the pulley.  
 
Analysis:  String must be at constant tension T throughout. 
 Let upwards acceleration be positive.  
 Let string accelerate at a on 1kg side 
 Then for the 1kg mass,  

 mamgT =− , i.e.  T ag =−  
 and for the 2kg mass 
  T mamg −=−  i.e. T ag 22 −=−    
 

Eliminating T, we obtain a = g/3 a) 
b) 
c) 

From either equation, T = 4/3 g 
Then the reaction is R = 2T = 8/3 g  

 
 

Now solve the same problem for masses m and m′  
 
 
 
 
 
 
Equilibrium of a Solid Body 
 
 
The static equilibrium of a solid body entails two distinct conditions:  
 
1)  The net force tending to accelerate it is zero  
 
 mEquilibriunalTranslatioofConditionF
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 Note:  All the forces do not have to go through the same point.  
A ladder leaning against a wall has reaction and friction forces at each 
end, which do not go through the centre or any other single point.   
 
2)  The net torque tending to rotate it is zero  
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 Note:  A body may be in translational equilibrium while out of 
rotational equilibrium.  It may also be in rotational equilibrium while 
out of translational equilibrium.  
 



Example:   A Loaded Bar 
 
A  weightless bar rests on two supports.  Several loads are hung from it  
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Calculate the forces  FA and FB  
 
 
Analysis:   
 
1) Translational equilibrium, and note all forces are in y-direction. So 

forces simply sum to zero: 
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2) Rotational equilibrium, so total moment about any point is zero. 

Taking moments about A: 
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Example:   Ladder against Wall 
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Let the weight of the ladder be 16 k
at 60° (π/3 radians) to the ground. 
 
Find the forces acting at each end o
Find the minimum coefficient of fri
 
 
Analysis 
 
Translation equilibrium:  Equat

FB = N
    W = N
 
Rotational equilibrium: Take m
    W × ½

⇒   N
 

Friction:   FB = N
⇒ µ
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Frictional Forces 
 

Friction is due to interactions between the atoms of an object and those 
of a surface that it touches.  Microscopic roughness plays a role too.  
Macroscopic roughness is treated separately.   
 

There are two kinds of frictional forces: 

• Static Friction, when the surfaces are at rest 

• Kinetic or Sliding Friction, when the surfaces are in relative 
motion. 

 
In both cases, the frictional force opposes motion between the 

surfaces, and its magnitude is 
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where µS and µK are the coefficients of static / kinetic 
friction respectively. 

 

  Definitions:  

• F = µS N is the minimum force required to set in motion the 
surfaces in contact and initially at rest, when the normal 
force (contact force) is N.   

• F = µK N is the minimum force required to maintain the 
relative motion of the surfaces in contact, when the normal 
force (contact force) is N.   

 
Example:   Inclined Plane with Friction 

  Sliding Uphill: Resolving forces parallel to inclined plane, 

 and using F = ma, 
a is uphill acceleration. 

   Fpull – mg sin θ – µ N = ma    
 

Fpull = mg sin θ  +  µ mg cos θ + ma    
 
 

Sliding Uphill: Resolving forces parallel to inclined plane, 

 and using F = ma, a is downhill acceleration
   Fpull + mg sin θ  –  µ N = ma    
 
 

a = 0 for  
 
 Just balanci
Fpull = – mg sin θ  +  µ mg cos θ + 
uniform motion. 
ng, Fpull = 0 = a, then µ = tan θ 



Acceleration with Varying Mass:  The Rocket 
 
 
A rocket at take-off has maximum mass (payload, structure and fuel) which 
decreases during flight as fuel is used.  This is a characteristic example of a 
varying mass problem. 
 
Let the rocket operate by ejecting exhaust at nozzle velocity   ev

at the rate 
dt
dm  (mass per unit time).  

At time t let the rocket have velocity  reltive to an inertial frame 
and mass . The exhaust mass dm that departs in the next time 
interval dt therefore has velocity v
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Conserving momentum p = mv: 
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   The momentum is unchanged, so dmvmdv e=  

   So acceleration is 
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   Integrating this from initial conditions, at t = 0, v = 0, m = m0, 
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This is a very important equation for rocket designers.  It says that the nozzle 
velocity must be made as high as possible, and that the fuel must be as high a 
proportion of the mass as possible.  It implies that rockets should be multi-
stage.  

 
 
 
 



Work and Power 
 

Work is done when a force acts along a displacement.  The work is the energy 
required to achieve this.  

 
Example: A body mass m falls through a height h.  The work done by gravity 
is Fh = mgh.  
 
Only the component of force parallel to the displacement is relevant.  If the 
force is at the angle α to the displacement, the work is Fs cos α.  In vector 
notation, this is  

sFW rr .=  
 If the path is curved, we may want the differential relationship, 
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 Power is the rate of doing work.  

vF
dt
rdF

dt
dWP rr

rr
.=== .  

 
 



Kinetic and Potential Energy 
 
 

Consider amF rr
=  - a force acting on a particle to accelerate it.  The work 

done is  
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 We define kinetic energy accordingly as ½ 2½mvvvm =

rv.   
 

Work done by a force accelerating a particle changes the kinetic energy of the 
particle.  

 
 
 
  

Work may be done by or against a force due to a field.  For example, a 
charged particle moving in an electric field under the Coulomb force, or a 
mass moving in a gravitational field.  
 
In these cases we introduce the concept of potential energy.  The work done 
on the particle by the force is  
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 The work done by the particle is WBY = –WON  = EA – EB 
 
 In differential form, 

dErdFdW −=−=
rr

.  
 
 

Potential Energy Curves 
 
 

We may write potential energy as a function of position, e.g. in one 
dimension, .  Then )(xEE =

dx
dExF −=)(  

is the force acting on the particle.  Consequently, minima and maxima of the 
potential energy curve are points where F = 0 and a stationary particle will 
remain at rest.  The minima are stable (or metastable) and the maxima are 
unstable.  
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