THERMAL AND KINETIC PHYSICS (PHY 214) PHYSICAL CONSTANTS

1 amu = 1.66×10^{-27} kg 1 eV = 1.60×10^{-19} J N_A = $Avogadro\ number$ = 6.02×10^{23} mol⁻¹ c = $Speed\ of\ light\ in\ vacuum$ = 3.00×10^8 m s⁻¹ k_B = $Boltzmann\ constant$ = 1.38×10^{-23} J K⁻¹ = 8.63×10^{-5} eV K⁻¹ R = $Gas\ constant$ = 8.31 J mol⁻¹ K⁻¹ T_s = $Ice\ point\ of\ water$ = 273.15 K P_s = $Atmospheric\ pressure$ = 1 atm = 1.01×10^5 Pa σ = Stefan - $Boltzmann\ constant$ = 5.67×10^{-8} W m⁻² K⁻⁴ c_P = $Specific\ heat\ of\ water\ at\ constant\ pressure$ = 4.2×10^3 J kg⁻¹ K⁻¹ c_P^{ice} = $Specific\ heat\ of\ ice\ at\ constant\ pressure$ = 2.1×10^3 J kg⁻¹ K⁻¹

 $\ell = Latent\ heat\ of\ melting\ ice = 3.33 \times 10^5\ \mathrm{J\ kg^{-1}}$