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7. GEOMETRIC OPTICS 
 

Introduction. 

Previously the implications of the wave nature of electromagnetic radiation including 

amplitude and phase have been studied. Notably the effects of polarisation, interference 

and diffraction were examined using the principle of superposition of electric fields. 

One of the first things we examined however was how the boundary conditions on the 

electric and magnetic fields controlled what happened to these electromagnetic waves at 

the interface between two dielectrics, ie. two semi infinite media with differing 

polarisabilities and consequently differing refractive indices. There, it was discovered 

that the radiation could either reflect back into the sourced region from the boundary or 

refract as it is transmitted into the unsourced medium. Optical systems, arrangements of 

elements that act on light to produce specific effects translating an object into an image 

at a separate location can be analysed to a great extent by ignoring the wave nature of 

light and dealing with rays. The ray represents the direction of travel of the energy in a 

light wave and this direction is normal to the wavefront that we have previously dealt 

with. The study of light using rays as the basic elements through which the behaviour of 

light is understood is known as geometric optics and can offer great simplification over 

the physical optics approachwhere the emphasis was on the wave nature of light. It can 

only be used with confidence when the dimensions of the elements making up the 

physical system are much larger than the wavelength of the light involved. In fact it is 

the case that 

 

      OpticsGeometricOpticsPhysicalLimit
0




 

 

Huygens principle, where each point on a wavefront acted as a secondary source of 

spherical waves whose amplitude was the only important thing to be considered, 

embodied a method of calculating the actions of optical systems that we saw had 

limitations when it came to dealing with the effects of diffraction and that those effects 

required a modification to become the Huygens-Fresnel principle, where the phases of 

the secondary spherical waves were to be included. Going from the former to the latter 

was effectively crossing the line from a geometric approach to a physical approach. A 

further important and simplifying principle in the geometric optics approach is Fermat’s 
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principle of least action. Fermat’s principle follows on from a hypothesis put forward 

by Hero of Alexandria who lived in the second century BC. He proposed that when light 

travelled between two points it took the shortest possible distance. In a homogeneous 

medium this would obviously be a straight line. Hero’s law will easily give the law of 

reflection. This is easily seen in the following construction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Three potential paths are shown for a ray of light to get from A to B via reflection in 

some plane. We also construct the perpendicular from B through the plane at O to an 

equal distance below the plane such that OB = OB
/
 Each of the three reflected rays, DB, 

CB and EB is shown reflected below the plane travelling to B
/
. It is clear (assuming 

Euclidean geometry) that the shortest path from A to B
/ 
 is the straight line ACB

/
 and it is 

also clear that BC = B
/
C as the triangles OBC and OB

/
C are similar thus the straight line 

ACB
/
 is the equivalent to the path ACB where I = R . The law of reflection is therefore 

proved using Hero’s principle.  

Hero’s principle, however, fails to deal with refraction as we see in the next construction  
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The correct line between the two points A and B when each lies in a medium of differing 

refractive index is AC
/
B (n2 > n1 ) and not the straight line ACB and Hero’s principle 

fails. Pierre de Fermat tried to rescue the principle by demanding not that the shortest 

distance between two points be the defining feature of the path travelled but that the 

path that takes the least time to travel defines the preferred path. The ray will travel 

more slowly in the medium with the higher refractive index and will therefore need to 

travel a shorter distance in that medium in order to minimise the time of the total journey 
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The terms under the square roots are AC and BC the hypotenuses of triangles AOC
/
 and 

C
/
BO

/
 and therefore applying Fermat’s principle of least action gives 

 

 T2I1 sinnsinn   

 

which is Snell’s law of refraction. 

The use of a ray optic approach and Fermat’s principle has allowed us to establish the 

two laws governing the behaviour of light at interfaces between dielectric media, two 

laws that were previously found with the use of Maxwell’s equations and their boundary 

conditions at the interface via a physical optic approach. Geometric optics sets out to 

establish what happens where such boundaries exist in the more complicated 

circumstances that may arise when these boundaries are designed and shaped to perform 

complex imaging functions. 

. 

 

 

 

 

 

 

 

 

 

 

 

 

We begin by making some general onservations on imaging systems before looking at 

specific examples of imaging systems. 
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We begin by talking about an abstract imaging system composed of any number of 

refracting and reflecting surfaces that acts upon rays to redirect them. The generalised 

system is represented in the simple figure above. 

 

We assume the rays to be travelling from left to right in what follows. On the left is what 

is known as the real object space, and every point, O, in object space is related, via our 

unspecified imaging system, to a point I in the real image space where due to the action 

of the system the rays from O converge. All of the rays drawn are taking the minimum 

time to reach I from O according to Fermats principle ie. they are isochronous. Also 

from the principle of reversibility the diagram may be reversed with the rays travelling 

from I to O. In an ideal system every ray from the object point, O, that passes through 

the imaging system, and only these rays, will pass through the image point I. O and I are 

said to be conjugate object and image points. Other points in the object space will have 

their own conjugate image point in the image space obeying the same rules. When the 

object is at infinity in object space the conjugate point in image space is on the axis at a 

focal point Fi and conversely when the image is at infinity in the image space the object 

must be at the focal point Fo in object space. The two spaces are said to be linked by a 

mapping described by a projective transformation that contains a linear relationship 

between axial distances, X, either side of the optical system  
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as well as transverse distances (perpendicular distances from the axis) , Y, where the 

distances are measured from the focal points F in the object or image space or from the 

axis respectively. 

In practice, there will be some departure from ideality due to: 

 

(i) Scattering. For example there will be reflection of some intensity at 

dielectric interfaces within the imaging system and there will also be some 

scattering within media where there is departure from homogeneity, eg. in 

glass there may be small local density fluctuations leading to refractive index 

variations acting as scattering centres. These effects lead to a less bright 

image. 
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(ii) Aberations. Spherical, astigmatic and chromatic aberations will be present 

where the components of the system depart from the ideal form or where 

different wavelengths/colours are refracted differently. These will, when 

uncorrected lead to non-ideal performance. 

(iii) Diffraction. The wave nature of the light will have an effect at some level 

leading to a blurring of the image point. 

 

These will be discussed later. For now we deal with perfection! 

 

 

Surfaces that reflect or refract perfectly are called Cartesian surfaces. For a Cartesian 

surface to produce a perfect image by refraction, is not a staightforward matter. 

 

 

 

 

 

 

 

 

 

 

 

 

Consider the refraction occuring in the above diagram. There is an object at O, a 

refracting surface boundary,  , separating media of refractive index n1 and n2 and an 

imaged formed at I. There are the rays passing towards and from P, an arbitrary point on 

the surface and the ray passing directly from O to I via the vertex at V. Fermats principle 

needs to be upheld with both routes OPI and OVI taking the same time to be traversed. 

Fermats principle can be stated in terms of the optical path lengths which must be equal. 

If a ray travels a distance l in a medium of refractive index n then the optical path length 

is nl and this must be the same for any path by which a ray travels from one point to 

another. In the present case 
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 ttanconssnsnlnln ioio  2121  (7.4) 

 

From the diagram 
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This equation describes a Cartesian ovoid of revolution which will be better specified 

once the problem under consideration is more precisely defined. Usually we require the 

object and image to be in the same medium (air) and this requires a minimum of two 

refracting surfaces.  
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The easiest example of of a lens that will provide a perfect image through refraction  is 

the double hyperbolic lens whose entrance surface will refract the rays into parallel rays 

before the second surface refracts the series of parallel rays to a common image point.  

Any lens is an example of a dielctric interface that has been shaped in order to achieve 

some desired effect eg the interface between a curved glass surface and air/vacuum. The 

easiest shape to create (by precision grinding) is a section of a sphere although this will 

not provide a perfect object/image system it will not depart too far from ideality and we 

will deal with so called spherical aberations later. 
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Refractive Optics. 

 Refraction at spherical surfaces. 

The diagram below illustrates an ideal spherical surface of radius R centred at C the 

sphere having a refractive index n2. It is in a medium of refractive index n1. There is a 

point source S. A ray from S to a point, P at the interface is shown at an angle of 

incidence I to the local normal at P. Also shown are reflected and transmitted rays 

obeying the usual laws of reflection and refraction. Because n2 > n1 the transmitted ray 

is refracted towards the normal and thus towards the optical axis of the system OS 

crossing the axis at the point O. If we imagine the 3D diagram that is the solid of 

revolution created by rotating the figure about the optical axis then all rays travelling 

from the source at the same angle to the optical axis (ie. in a cone) will cross the optical 

axis at O. 
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In the triangle CPS we see  +  = I and in triangle CPO we see  = T + . 

From Snell’s law (of refraction)  

 

)sin(nsinn)sin(nsinn 2T21I1    (7.6) 

 

Using vsinucosvcosusin)vusin(   

 

    sincoscossinnsincoscossinn 21   (7.7) 

 

We now use an important approximation called the paraxial approximation where the 

rays are assumed to be travelling close to the axis making ,  and  small and 

approximately equal to their sin and their cosine being approximately 1.  

(Eg. 20
0
 = 0.348 rads and sin0.348 = 0.342) 

Alternatively stated the paraxial approximation assumes h is much smaller that R and l  
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Putting l0  s0 and l1  s1  
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This result could have been obtained in a different fashion by using Fermat’s principle 

which requires that the optical path length is stationary wrt position 

 

 i2o1 lnln         (7.10) 

 

With use of the cosine rule in triangles SPC and PCO to get expressions for lo and li 

respectively,  
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And 

   2
1

22 2 cos)Rs(R)Rs(Rl iii      (7.11b) 

the optical path length can be rewritten 
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          (7.12) 

There is a very important sign convention to be observed when doing calculations 

in geometric optics and it is introduced here wrt the above diagram. The convention as 

far as we have used it so far is for light propagating left to right (ie. object space to the 

left and image space to the right)  

i) Distances relating to the object, eg so , are positive when measured to the 

left of V whilst  

ii) Distances relating to the image, eg. si , are measured positive when 

measured to the right of V.  

iii) R is measured as positive if the centre of the circle is to the right of V. 

iv) The object or image height, h, is measured positive when measured 

above the optical axis.  

All of the quantities in that diagram are measured as positive under this convention. 
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Re-arranging 
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In the paraxial approximation 0o sl   and ii sl   
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Equation 7.17 is a very important equation in ray optics describing refraction at a single 

surface and the relation between the conjugate points and the radius of curvature of the 

surface. We will use 7.17 frequently and proceed to use it now to look at some special 

cases. 

 

 

 

 

 

 

 

 

 

We may now use 7.17 to establish the conjugate points in some special circumstances. 

1. When the object point source is placed at a point Fo a distance fo = so from the 

vertex of the refracting surface such that the resulting image is formed at an 

infinite distance, si =  the equation becomes 
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Where Fo is the object (or first ) focus and fo the object (or first) focal length.  
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The second focus is the point on the axis where the rays from an object at infinity, or 

alternatively plane waves are converted to converging spherical waves crossing the 

optical axis (or converging to a point) at a distance to the right of the vertex. Where this 

occurs is the image (or second) focal length, fi . 
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The above figure shows a spherical refracting surface where the high refractive index 

region is to the right and the centre of curvature is to the left of the vertex. Following 

the convention this means that R must be a negative number. We see from the 

construction that if the object is at infinity, so =  and we have plane waves impinging 

on the surface the rays are refracted away from each other and appear to converge at a 

point , the image focus to the left of the vertex, this makes the image focal length 

negative according to convention and in fact the image is a virtual image, that is to 

say it is not an image that could be projected onto a screen as to form it we need to 

project the rays back. We can form the equation in this circumstance to find fi 
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The fact that R is negative means that the equation gives a negative value for fi as 

required. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Finally, the above figure shows the first focal point for the geometry where the centre is 

located to the left of the vertex and R is thus negative. Applying the equation 
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In this case the object is to the right of the vertex and the distance must be negative as is 

the case according to the equation. This is a virtual object! We will see later that 

virtual objects do exist as the virtual image formed by another lens or refracting 

system. 

We now turn to the usual situation where the object and image are formed in the 

same medium, usually air. For this to happen we need at least a pair of refracting 

surfaces or lens. 
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With one hemispherical surface we have found; 
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Following the convention for the signs of distances; 

 

The conjugate points for a positive curvature refractive surface are; 

 

i) The object focal length (where the image is formed at si =  
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ii) The image focal length (where the object is placed at so =  
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The corresponding conjugate points for a negative curvature refractive 

surface are; 
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c) Thin lenses. 

The principles that we have applied to a single spherical refracting surface apply to two 

surfaces back to back allowing the determination of the property of a lens. With two 

spherical surfaces to combine there are a number of general possibilities that can be 

identified before specific combinations can be looked at. First we examine the simple 

proposition of a bi convex lens as represented in the following diagram. First it is 

important to locate the conjugate points of the lens whose two surfaces are represented 

by the two spheres shown. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The paraxial rays from O will refract on crossing the first surface as shown. Tracing 

these refracted rays backwards will show that they meet at P
/
 which is at the image 

distance, si1 , from the first surface’s vertex V1. We can use 7,17 on this first surface 

NB Where the two circles overlap the refractive index is nL the refractive index of the 

lens whilst elsewhere the refractive index is denoted nm the refractive index of the 

medium the lens is placed in (usually air). 
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This first surface image acts as a virtual object for the second surface at a distance so2 

from that surface’s vertex, V2. It should be noted that as far as our preceding discussion 

is concerned the object space for the second refractive surface has a refractive index nL . 

From examination of the diagram 

 dss 1i2o          (7.24) 

 

Where importantly we refer to the magnitudes of the distances (they have signs 

associated with them). Since 2os  is an object on the left hand side of vertex 2 it has a 

positive value and 2o2o ss   whereas the image relating to 1is  is also on the left and is 

therefore negative, 1i1i ss   
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Therefore at the second surface the equation 7.17 yields 
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In this case nL < nm and R2 is negative making the RHS positive. This implies that the 

second term on the LHS must be larger than the first. Addition of 7.23 for the first 

surface  and 7.26 for the second surface gives 
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Now the thin lens approximation is made where d  0  
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Where we have allowed the object of surface 1 to be the object and the image of surface 

2 to be the image. 
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Equation 7.28 is a central equation in the theory of lens known as the Lens Makers 

Equation or the Thin Lens Equation.  

Were the lens to be in air (the most frequent case) then nm = 1 and the lens makers 

equation becomes 
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7.28 can be used to find some special cases; 

 

(i) If the object is at infinity, so =  , then the image will be formed at the focal 

plane, si = fi or image focus (by definition). 

 











21

11
1

1

RR
)n(

f
L

i

      (7.29) 

 

(ii) Similarly moving the image to infinity will require the object to be at the 

object focus 
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Or noting the symmetry between fi and fo   
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(iii) Combining 7.28 and 7.32 we obtain 
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Equation 7.33 is known as the Gaussian lens formula. With equations 7.17, 7.28, 7.32 

and 7.33 we can predict the behaviour of single lenses in most circumstances where the 

thin lens approximation holds good.  

It is of interest and importance to note equation 7.31. This is telling us that the lens has 

the same focal length whichever way around it is facing!  

Ie. an object at infinity will be focused at the same distance from the lens whichever 

side of the lens is towards the object. 

In applying these equations it is of greatest importance to apply the sign convention 

carefully! 

 

For light propagating left to right 

Lens descriptors,     R +ive if C is right of V 

Object descriptors      so and fo +ive left of V 

Image descriptors       si and fi +ive right of V 

 

Looking at the previous diagram we can see how the convention applies to the situation 

depicted. The example chosen to study in detail was a bi-convex lens and we see that 

the centre of surface 1, C1 is to the right of the vertex V1 and therefore R1 is positive. 

For surface 2, C2 is to the lext of vertex V2 and R2 is therefore negative. so1 is to the left 

of V1 and is therefore positive whilst si1 is also to the left of V1 and is therefore 

negative. so2 is to the left of V2 and is therefore negative whilst si1 is to the right of V2 

and is therefore positive. 
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We may look at a few examples: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONVEX CONCAVE 

Bi-convex Bi-concave 

Plano-convex Plano-concave 

Meniscus-convex Meniscus concave 

R1 > 0 
R2 < 0 

R1 < 0 
R2 > 0 

R1 > 0 

R2 = - 

R1 < 0 

R2 = - 

R2 >R1 > 0 R1 >R2 > 0 
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Looking first at the bi-convex construction, the simplest structure may be with a 

symmetry such that RRR 21  . The lensmakers equation is then for a lens in air 
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Computation of the focal length of a thin lens is a straight forward matter using the lens 

makers equation with the important matter being to be taken care that the the sign 

convention is applied correctly. eg.  

(i) For a bi-concave glass lens, nl = 1.5, with radii of curvature cm10R1   and 

cm15R2   the focal length is found as follows; 

 

For the first refractive surface R1 is to the left of V1 and is therefore negative, 

cm10R1  , whilst for the second refractive surface R2 is to the right of V2 and is 

therefore positive, cm15R2   
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(ii) For a plano convex glass lens with radius of curvature cm5R1   

 

The centre of first refractive surface R1 is to the right of V1 and is therefore positive 

whislt the centre of the second refractive surface is to the right (or left) of V2 and we can 

call this positive or negative! 
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We can also use 7.28a to find the position of an image given the position of an object 

and the radii (or equivalently focal length) of a lens. 

 

(iii) For a bi-concave glass lens with radii of curvature,R1 , R2 = -5cm and +10cm 

respectively. If the object is placed at 10 cm to the left of the lens, so = +10cm then the 

image distance, si , can be found using 7.28a 
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The negative sign tells us that the image is virtual and appears on the same side of the 

lens as the object, that is according to our convention, to the left of the vertices (recall 

we have a thin lens and the two vertices are for practical purposes coincident although 

strictly this refers to the vertex of the second surface). 

 

(iv) A final example is to find the focal length where the glass lens is as in (i) but is 

employed underwater. Water has a refractive index, 33.1n OH2
  
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(v) By making the difference between the refractive index of the lens and the 

medium smaller we have reduced the action of the lens and the object at infinity is 

imaged at a greater distance from the lens. It is still a virtual image. If the refractive 

index of the medium was greater than that of the glass lens, eg nm = 2.5 

 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 263 
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The bi-concave lens is now a positive, converging lens and will produce real images. 

Note in passing, the value of 2.5 for the refractive index of the medium is extremely 

high! 

The situations (i), (iv) and (v) for the bi-concave lens as the medium refractive index is 

gradually increased until it is greater than that of the lens is depicted above in figures a 

to c. 

 

The Gaussian lens formula, 7.33, may be re-written to make the image distance the 

subject for example 
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Inspection of 7.34 shows that when the object is at infinity the image is at a distance +f.  

(i) For a convex lens where f is positive the image distance is positive if so > f 

indicating a real image to the right of the lens. As so is reduced from infinity the 

denominator becomes smaller and si consequently larger. When the object is placed at so 

= f the image is at infinity. Reducing the object distance yet further, so that so < f , will 

result in a negative value for si or a virtual image to the left of the lens. 

(ii) For a concave lens if we inspect equation 7.34, for all positive object distances, 

so > 0, ie. all real objects to the left of the lens, the denominator is positive whilst the 

numerator is negative. Thus the image distance is negative ie. it is virtual and to the 
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right of the lens. At so =  the image is at f . As the object distance is reduced from 

infinity the numerator approaches zero from a negative value whilst the denominator 

approaches a limiting value of +f  (for so = 0) si therefore approaches zero from a 

negative value (-f when so =  ). To obtain a real image with this lens we need a virtual 

object! 

 

Focal planes, focal points and ray tracing. 

Ray tracing is an extremely effective way of finding out how an optical system will 

behave. We have noted in what has preceded that the axial ray because it impinges upon 

and exits the surfaces normally is not displaced in any way, in agreement with refraction 

at a plane interface. Are there any other special rays that we can use? 

The construction shown below shows the straight through axial ray. It also picks points 

A and B, one on each surface and constructs the tangent through each where A and B 

are chosen such that the two tangents are parallel to one another. The radii, R1 and R2 

through points A and B and centres, C1 and C2 of the two surfaces are also shown. 
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The lines BC2 and AC1 are parallel and therefore the two triangles, AC1O and BC2O are 

similar. This means that 
2

1

2

1

OC

OC

R

R
 . As the values of R and the positions of the centres 

are fixed this means that the position of O is a fixed point independent of where A and 

B are chosen and it is defined as the optical centre of the lens. The ray AOB can be seen 

as equivalent to a ray passing through two plane parallel surfaces and there will be no 

angular displacement, only a slight lateral displacement (exaggerated in the diagram) 

which tends to zero in the thin lens approximation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

We can therefore draw a ray from any point in object space through the centre of the 

lens and it will be an undeviated straight line. We then have two rays that we can draw 

immediately in any ray construction. We also know that any ray parallel to the axis 

must be deflected through the focal point and conversely that any ray through a focal 

point must emerge parallel to the axis.  

The three rays we have available to use in a construction beside the optical axis are ; 

(i) A ray from the object parallel to the optical axis will be refracted at the lens 

through the image focus. 

(ii) A ray from the object through the focus will be refracted parallel to the 

optical axis. 

(iii) A ray from the object through the optical centre of the lens will pass 

undeviated. 
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NB. Rays (i) and (ii) may involve the construction of a virtual ray by back tracing.  

Two examples of ray tracing are given in the following two diagrams; 

 

(i) The converging lens. 

Representing a thin converging lens by the dashed line perpendicular to the axis and 

representing the object by a thick arrow, an example of ray tracing is shown below.The 

diagram shows the positive (converging )lens at L with the rays (i), (ii) and (iii) 

included 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above construction includes all of the principle rays and from it we learn a number 

of things. The image to object height is given by 
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And MT is known as the transverse magnification. There is a sign convention to be 

observed when discussing transverse magnification. The convention requires that 

fo  

 si 
so 

fo 

hi 

ho 

L 

(ii) 

(i) 

(iii) 

xo 
xi 
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transverse distances measured above the optical axis are taken as positive whilst those 

below are negative. In this example both si and so are real and positive but ho is positive 

whilst hi is negative and therefore MT is negative.  

 

Using the previously established relation between object and image distance, 7.33 , 
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Newtonian equation for thin lens. 

An alternative way of defining distances was used by Newton. Taking the distances of 

object and image as measured from the focal point such that 

 

fsx oo    and   fsx ii     (7.37) 

 

Examining the above diagram, on the LHS of the lens we see two similar right hand 

triangles, one above and one below the axis with f in common 
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Similarly on the RHS 
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Combining these 
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  2
io fxx         (7.40) 

 

Equation 7.40 is the Newtonian form of the Gaussian lens equation. 

 

An axial or longitudinal magnification may be defined using 7.40 as the rate of change 

of imageaxial distance with object axial distance 
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Equation 7.41 holds some interesting implications regarding the action of a lens in that 

if the transverse magnification is doubled by for example reducing the object distance or 

xo the longitudinal magnification is increased by 4. There is in other words an apparent 

change in perspective. A good example of this is the foreshortening effect seen in a 

telephoto lense where when focusing on two or more distant objects, the further object 

would not be judged as being as far away as it is if the lateral size/height of the object 

were the only clue, eg. two men in the distance , one twice as far away as the other, 

would appear to differ in height by only 1.44 (their actual height being equal) giving 

the false perspective that the further man was much closer to the nearer man than he 

actually is. 

 

(ii) The diverging lens. 

 

 

 

 

 

 

 

 

 

 

 

hi 

fo  

 
si so 

fo 

ho 

L 

(i) 

(ii) 
(iii) 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 269 

 

The above construction uses the same three rays (as with a converging lens at L) but 

now with a diverging lens at L. The dashed lines are projections of the rays and the 

image which is formed to the left of the lens is a virtual image. 

Again, the transverse magnification can be defined 
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Both object and image are upright and therfore ho and hi have the same sign and MT is 

positive.  
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Compound thin lenses. 

Many optical instruments involve the creation of a compound lens from two or more 

lenses. Many camera lenses involve four and more lenses acting together. In such a 

setup the analysis can be complex and is often carried out using a computer although it 

may be useful to use ray tracing etc,. as an initial means of finding the type of 

compound structure capable of achieving a particular purpose. To keep things simple 

we will look at the use of two thin lenses used together as a single compound lens. In 

carrying out this analysis we begin by splitting the problem of a pair of lenses used 

together into two possible situations. 

i) When the separation between the two lenses is less than either 

focal length. 

We begin by considering two positive thin lenses, L1 and L2 separated by a distance d 

smaller than either focal length. We may find the resultant image by ray tracing using 

similar techniques as previously employed for the single lens as follows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Begin by ignoring L2 and construct the diagram as usual for L1 with  

i) A ray [1] passing through Fo1 and then refracting at L1 parallel to the optical 

axis. 
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ii) A ray [2] travelling parallel to the optic axis in the object space and being 

refracted through Fi1 

The previous two rays locate the top of the first attempt image that now acts as the 

object for L2. 

iii) Now draw a ray [3] back from the top of the image/object through the 

optical centre of L2 and allow it to be refracted by L1 to intercept the top of 

the object. 

 

The above diagram shows the actual rays [1] and [3] in bold and the other rays used in 

the construction as dashed lines (when only L1 mattered). These rays define the actual 

image position. It is inverted and demagnified in this case. 

 

ii) When the separation between the two lenses is greater than 

either focal length. 

As for the previous analysis we begin by finding the image for L1 alone and then use 

this as the object for L2 to find the image due to both lenses 
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i) Construct a ray [1] passing through Fo1 and then refracting at L1 parallel to 

the optical axis. 

ii) Construct a ray [2] parallel to the optic axis passing through Fi1 the 

intersection of [1] and [2] give the image of L1 which now acts as the object 

O2 of L2 

iii) Construct a ray [3] from the top of the image I1/O2 through the centre of L2 

acting as the undeviated ray through the centre of L2 and extend this 

backwards to L1 where it is refracted back to the top of the object O1 

 

We have a final image for the two lens system, I2. It is not inverted  

 

We can analyse this using the Gaussian lens formula sequentially on L1 and L2 

beginning with L1 and finding the position of its image si1.  

We begin by noting that as far as the compound lens system is concerned the actual 

object distance is 1oo ss   and the actual image distance is 2ii ss   

Applying GLF to L1 
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And for L2 the image from L1 acts as the object. We need to find this object distance as 

follows 

 

   1i2o sds   

 

If 1isd   then the object for L2 is real whereas it is virtual when 1isd   
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rewritten as 
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We have already found so2 and using this obtain 
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We can obtain a more useful expression if everything is in terms of the first object 

distance so and the second image distance si which are the object and the image 

distances of the compound system by using the equation relating si1 and so1 through f1 ,  
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The distance of the last optical surface of a system to the second focal point of that 

system is known as the back focal length b.f.l and the distance of the first optical 

surface from the first focal point or object focus is known as the front focal length, f.f.l 

 

i) front focal length, f.f.l 

From Gaussian lens formula if we allow is  then 22o fs   or 21i fds   

In this case the Gaussian lens formula gives 

 

   
)fd(f

)ff(d

fdfs
is

o 21

21

21

111











 

 

Of course this value of so is the f.f.l ie the position in front of the compound lens system 

at which an object is placed to cause an image to be formed at infinity just as would be 

the case for a single lens 
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ii) back focal length b.f.l 

In the same way if we allow os  then oo sfs  2  and in this case  
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The b.f.l is the distance from the compound lens system at which the image is formed 

when the object is at infinity just as would be the case for a single lense. 

We note that unlike a single lens where io ff   in the case of the compound lens 

system the l.f.fl.f.b   and it is of importance which way around the lens system is 

facing except in a special case. 

If the lenses are brought into contact and 0d   then we find 
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Important equations and topics 
in analysis of lenses 

1) Paraxial approximation 
 
2) Lens makers equation 
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3) Sign convention 
 
4) Gaussian lens formula 
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5) Combining lens maker plus Gauss 
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6) Ray tracing 
 
7) Transverse magnification 
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8) Longitudinal magnification 
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9) Newtonian form of Gaussian equation 
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10) Compound lens formula for lenses in contact 
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11) Front focal length and back focal length for lens pair 
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12) Compound lens formula for two lenses separated by a 
distance d 
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Optical Instruments. 

 

i) Vision Defects and Corrective Optics 

At this point, before discussing vision defects and their correction with lenses it is 

useful to introduce the concept of the dioptric power of a lens. We have seen 

a number of equations where the quantity 
f

1
 was the subject of the equation eg for 

the relation between a curved surface and the focal length of that surface we found 
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And for two lenses or refracting surfaces in contact the combined focal length was 
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The quantity D
f

1
 where D is the dioptric power of the lens, a quantity used by 

optometricians. 

 

We then see that the dioptric power of a lens is  
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If we consider a bi-convex (or bi-concave) to be two plano convex (plano concave) 

lenses placed in intimate contact then we may speak of the dioptric power of one of 

the surfaces 
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where we have used R1 =  

 

And the dioptric power of the lens is simply  

 

21 DDD   

 

The sign convention is as always to be taken into account. 

 

For a double lens combination when in contact 

 

21 DDD   

 

where D1 and D2 are the dioptric powers of the two lenses seperately. 

The usefulness of this quantity is apparent and is of particular convenience for 

optometrical purposes where the eye lens plus spectacle lens system are used in 

conjunction to correct vision defects.  

The eye with its lens is able to alter the focal point of the lens by muscle control over 

the curvature of the lens. The relaxed eye with a large radius of curvature will have a 

greater focal length or smaller dioptric power and it is usually as a relaxed system that 

objects at infinity are focussed onto the retina. Bearing in mind that the image distance 

is fixed at the retina nearer objects will require that the focal length is reduced according 

to the Gaussian lens formula 
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This is possible to a certain extent but there will be a point called the near point and it is 

not possible to focus any object closer to the eye than this. The near point becomes 

further from the eye as we age and is why we tend, for example, to hold books further 

away in order to read comfortably as we age. Eye correction is possible with an 

appropriate combination of spectacle lens and eye lens. 
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a) Shortsightedness (Myopia) 

One of the most common vision defects is shortsightedness or myopia. This is where the 

focal length of the relaxed eye, unaided is shorter than the distance between lens and 

retina ie. an object at infinity is focused somwhere in front of the eyeball. As the object 

approaches the eye the image will be formed closer to the retina until the far point is 

reached where the image is formed at the retina by the relaxed eye. Any closer and the 

eye may accommodate to allow the image to continue to be formed on the retina. In 

short the diotric power of the relaxed lens is too great (it converges too much). 

 

Object at infinity 

 

 

 

 

 

 

 

 

The far point 

 

 

 

 

 

 

 

The accomodated eye 
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Given that the dioptric power of the relaxed myopic eye is too great (and 

positive) and that 21 DDD   we can correct this problem by 

introducing a lens with a negative dioptric strength (diverging lens) with the 

effect of reducing D 

 

 

 

 

 

 

 

 

 

 

A meniscus lens with a surface whose concave radius is smaller than its 

convex radius will serve to correct myopia as the overall dioptric strength of 

these two surfaces will be negative. The negative lens is chosen such that it 

forms a virtual image of an object at infinity at the far point which is able to 

be focussed by the relaxed eye. eg. If the myopic has a far point at 2 metres 

then the lens is chosen such that 
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We need to note now that this is ok for contact lenses where the lens and 

contact lens are separated by a very small, effectively zero, distance. We 

have seen that the actual distance between two lenses forming a compound 

system frequently has to be accounted for. The separation is usually chosen 

such that the spectacles are placed at the front focal point of the relaxed eye 

lens. This is done in order to ensure that the unaided eye has the same 

magnification as the corrected eye. Often the far point of each eye would be 

different and care must be taken to ensure that there is no difference in 

magnification between the two eyes as this would create greater problems 
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for the user. The diagram below illustrates that the placement of the 

corrective lens at foE and how this does not alter the magnification of the 

unaided eye 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Knowing the focal length fL of the corrective lens and the focal length fE of 

the eye we may find the back focal length which should be the distance from 

eye lens to retina 
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We may compare the power of a spectacle lens with that of a contact lens 

correcting the same condition by using for the contact lens/eye lens system 
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EC fff

111
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This combined focal length and the b.f.l need to be equal to the eye lens 

retina distance and 
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Simplifying and re phrasing 
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b) Longsightedness (Hyperopia) 

Where the focal length of the relaxed eye, unaided is longer than the distance between 

lens and retina ie. an object at infinity is focused somwhere beyonf the retina the 

sufferer requires reading glasses to correct hyperopia. This is the complementary 

condition to myopia and we can begin by constructing the diagrams that we had 

previously in our consideration of that defect 

 

Object at infinity, relaxed eye 
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Object at infinity, accomodated  eye 

 

 

 

 

 

 

 

 

 

The eye may form an image of a distant object by accomodating but this will only be 

possible until the object is at the near point 

 

 

The near point and fully accomodated eye 

 

 

 

 

 

 

 

 

The lens focuses (accomodates) to form an image at the retina of an object at the near 

point. Any closer and the unaided hyperopic eye will be unable to accommodate in 

order to form an image. To correct this defect and enable the eye to focus objects closer 

than the near point requires that the lens converges and that the eye/lens pair have a 

greater dioptic power than the unaided eye. This requires that the lens is convex or more 

usually a meniscus lens is used with a surface whose concave radius is greater than its 

convex radius. Such a lens will serve to correct for an object closer than the near point 

of the unaided eye by producing a virtual image further from the eye than the near point 

that acts as a virtual object beyond the near point. 
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Distant object relaxed eye 

 

 

 

 

 

 

 

 

Nearby object accomodated eye 

 

 

 

 

 

 

 

 

The above diagrams illustrate the action of a lens correcting hyperopia. An example will 

further aid understanding. Suppose the hyperopic eye has a near point of 100cm and an 

object eg a book is held at 50cm. It is then required that the corrective lens form a 

virtual image of this object (the print of the book) at 100cm to act as a virtual object for 

the eye. 

  cmso 50   cmsi 100  

 

Using the Gaussian lens formula we can find the required focal length of the corrective 

lens 
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   cmfL 100  
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To form the virtual image object must be closer to the positive lens than the focal 

distance as is the case here. 
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ii) Magnifying Glass 

When viewing an object the image at the retina may be increased in size thus increasing 

the perceived size by moving the object closer. However as the eye cannot focus on an 

object closer than the near point (usually about 25cm from the eye) at position a in the 

diagram where there is maximal accomodation of the eye lens there is a natural limit to 

how large the perceived image may become with the unaided eye alone. To obtain a 

larger image a further lens may be used. 

The magnifying glass allows magnification of an object that is positioned closer to the 

lens than the focal length of that lens and closer than the near point of the eye at 

position b in the figure. It achieves this by creating an erect virtual image to act as an 

object for the eye. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagram illustrates the working principle of the magnifying glass where the 

virtual image of height h
/
 is viewed by the eye as an erect virtual object. Normally the 

viewer will adjust the position of the lens, eye and object for comfortable viewing. 

Clearly the linear transverse magnification produced will depend on these relative 

positions and not on the particulars of the lens used. The angular magnification may be 

defined as the ratio of the angles m and 0 the angle subtended at the eye by the 

magnified virtual object and the angle subtended at the eye by the object at the near 

point. 

a b 

h
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At one extreme if the virtual image/object is viewed at infinity then fs   and 
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The other extreme is where the image is viewed at the near point and the image distance 

cmsi 25  

 

From the Gaussian lens formula 
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Giving an angular magnification at the near point of 
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The actual magnification will lie between these two values as the viewer adjusts 

position. 
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iii) Microscope 

It is usually the case that magnifiers are used to aid the eye in viewing images formed 

by optical components of another optical system. The optical microscope is a good 

example of this type of use. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The compound microscope increases the possibility of magnification obtained with the 

single positive lens (magnifying glass) where now an eyepiece is used to view and 

magnify the image created by an initial lens or objective of very short focal length. The 

basic setup is shown above. 

The angular magnification is given by the same equation as for the magnifying glass 

with the exception that the effective focal length of the objective/eyepiece combination 

replaces the focal length of the single lens. 
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The effective focal length of two lenses separated by distance d is given approximately 

by 
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Substituting we have for the magnification 
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We can use the Gaussian lens formula and the fact that e
/
o fds  , to find that 
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and with both of these equations together  
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Ie the total magnification is the product of the linear transverse magnification of the 

objective multiplied by the angular magnification of the eyepiece when viewing the 

final image at infinity. 
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We can also use the form for the transverse magnification as given using the Newtonian 

formulation in terms of xo and xi to obtain 
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And thus find a more useful form for the total magnification 
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The total length of the microscope is Lff eo   

Finally we should note that the eyepiece and objectives may be multi-element lens 

systems themselves. Any professional microscope will be a great deal more complex 

than the one described by the diagram here although the principle of operation is the 

same. 

 

iv) Telescope 

The refracting telescope is designed to obtain angular magnification of objects at large 

distances effectively at infinity. 
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The principles of the astronomical or Keplerian telescope are shown with 

reference to the above diagram. The important feature that marks this configuration of 

two lenses out is that the focal points of the objective and the eyepiece coincide between 

the two positive lense. This requires that the separation between the two lenses is given 

by eoeo ffffd  . The objective forms a real intermediate imageRIM  at the 

focus of the eyepiece for which it acts as a real object. The real intermediate object 

being at the focus of the eyepiece will result in parallel beam emerging from the system. 

The final image is in this case inverted. This is identical to the beam expander that we 

have already considered but with the long focal length lens in front. 

 

The alternative refracting telescope configuration is known as the Galilean 

telescope as shown in the diagram below. 
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This configuration consists of a positive (converging) objective lens followed by a 

negative (diverging ) eyepiece lens. Again the focal points of the two lenses coincide 

but this time the focal length of the eyepiece is negative and the coincident foci appear 

after the eyepiece. Here the lens separation is eoeo ffffd  . The virtual 

intermediate image, VIM in this case is a virtual object for the eyepiece. The final 

image is erect. 

From the right angle triangles formed by the intermediate image, the undeviated ray and 

optic axis in both configurations we can see that the angular magnification is given in 

both cases by 
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Bearing in mind the sign of fe for each configuration we have a negative value for M 

for the first Keplerian telescope consistent with the inverted image and a positive value 

of M for the Galilean telescope again consistent with the non-inverted image in this 

case. 

 

 

 


