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3. WAVEGUIDES 
 

We move on in these notes to examine the possibility of guiding light in a desired direction by its 

confinement in a designed structure. The first means that springs to mind is to use the 

phenomenon of total internal reflection that was discovered in the previous section where it is 

recalled, light sourced in a medium of higher refractive index, nS , will, at the boundary with a 

dielectric of lower refractive index, nU , undergo total internal reflection if the angle of incidence 

at the interface is above the critical angle, 









 

S

U
C

n

n
sin 1 . To do this a symmetric, dielectric 

slab waveguide is created with a high refractive index, dielectric slab, known as the guide, 

bounded on two sides by dielectrics of equal and lower refractive index known as the cladding 

dielectric. 

Such a system while presenting no great difficulties in analysis is however a less straightforward 

system than that of guiding electromagnetic waves using reflection off of a metal surface and 

thence guiding the wave between two metal plates. It is therefore this system that we begin by 

examining. 

 

Metal Guides. 
 

The simplicity of metal waveguides lies in the fact that at the metal/air interface there is no 

evanescent field into the metal and therefore no phase change to take account of. The boundary 

condition at the metal/air interface is simply that the electric field must be zero. This is because 

ideal metals (perfect conductors) do not support an electric field. Any attempt to introduce an 

electric field in a metal will result in the re-arrangement of the copious mobile electrons available 

in the metal in such a way as to polarise the metal thus negating the electric field and to do this 

quickly! Nevertheless an analysis of the metal guide is very useful as it will bring out many of 

the features that are found in a dielectric slab waveguide but in a simpler fashion, and therefore 

will serve as a useful introduction. The simplified system and the concept of modes may be 

introduced by considering the guiding of an electromagnetic wave between two parallel metal 

plates, which are perfect reflectors (infinite conductivity), separated by a distance d,. This is not 

achieved in practice but at microwave frequencies it is approximated sufficiently well. For 
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optical frequencies the losses are too great and the dielectric slab waveguide is used but analysis 

of the simpler system is a useful starting point. 

The system analysed in the following is illustrated below and the axes defined where we assume 

the wave to be guided in the z direction and bound in the x direction with E field polarised in the 

y direction (a TE wave). 

 

 

 

 

 

 

The field will be a superposition of “upward” and “downward” travelling waves, making an 

angle  to the x axis, either of which is of the form 

 

       cosxsinzjkexpEEy   0  (3.1) 

 

Where examination of the diagram has shown 

 

 coskkx 0   and sinkkz 0  (3.2) 

 

At either of the metal surfaces  superposition will then be a sum of a downward travelling wave 

(eg. incident) and an upward travelling wave (eg. reflected) and the resultant field is given by 

 

 

       cossinexpcossinexp 00 xzjkExzjkEEy    (3.3) 

 

The signs of the cosx  terms in the above represent the fact that the downward travelling field 

is travelling in the –x direction and vice versa 

Ey 

x = 0 

x = +d 

d 
x 

z 

  
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The boundary conditions must be satisfied at 0x and dx  . These are that E vanishes at 

these values of x as the metals are perfect conductors. The first condition for 0x  is satisfied if 

E+  = -E- = E0 .  

and thus 

       cosexpcosexpsinexp 0000 xjkxjkzjkEEy   

We may use De Moivres theorem to rewrite the exponential in the square bracket and obtain 

 

      sinzjkexpcosxksinEEy 0002   (3.4) 

 

This solution is that of a wave travelling in the z direction with a sinusoidal amplitude envelope 

in the x direction. ie 

 

  )zjexp()x(EEy    (3.5) 

 

where  is the called the propagation coefficient and is the wave vector in the direction of 

propagation (in this case z).  sink0  and    cosxksinExE 002  

The second condition requires  

 

      02 0 cosdksin  (3.6) 

 

Or 

 

     mcosdk 0 , ...,,m 321  (3.7) 

 

Equ 3.7 is the eigenvalue equation of the guide and is the condition that sets the modes of the 

guide. This is the transverse resonance condition and may be understood with reference to the 

following diagram; 
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A guided ray is shown in the left hand figure and a constant phase front perpendicular to the 

direction of propagation of the ray by the dashed line. Concentrating on the path ABC it is 

necessary that over the path ABC the ray accumulates a change in the phase of the wave equal to 

an integral multiple of 2 as both A and C lie on the same constant phase front. ie the phase 

change is ,  

 

      20 mABCk   

 

Each value of m corresponds to a particular guided mode. The length ABC can be calculated by 

the construction in the figure on the right which “unfolds the ray" and we have ABC = 2dcos 

hence the condition, 2k0dcos = 2m. 
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Consideration of (3.7) leads to a number of conclusions: 

1) If 1
dk

m

o


 there is no solution  

2) So for any guided mode at all to exist  

     
0k

m
d


    (3.8) 

 3) In other words if d is fixed there is a value of k0 

     
d

m
k


0   (3.9) 

   below which no modes exist.  

4) Writing this in terms of frequency, there exists a cut off frequency,  

     



2

0ck
CO   (3.10) 

  below which no modes exist. 

The guide is seen to act as a high pass filter. This is why daylight can be seen when looking 

down a section of microwave guide! 

 5) Alternatively no modes are supported if the guide is too small and 3.9 may be 

recouched 

     
2


d  (3.11) 

 6)  If d is just slightly bigger than 
2


 then only one mode is supported. Larger values 

of d lead to multimoded guides with some low frequency cutoff. The larger m (the 

higher the order of the mode) the smaller  will be and at cutoff  = 0 at which 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 64 

point the waves just bounce up and down between the walls without propagation 

down the guide. 

The analysis of this simpler system has demonstrated many of the important features of the 

dielectric slab waveguide whose analysis is more difficult due to the change of phase on 

reflection which is itself a function of .  

The first and second order modes of the metallic guide are sketched below. 
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m= 1 
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The Symmetric Slab Waveguide 

 

Physical Structure 

 

    

 

 

 

   

      

 

 

 

 

The simple structure outlined above will act as a waveguide, if nG > nC, for waves 

travelling at an angle wrt the normal to the interface greater that the critical angle. It is 

however the case that not any and all angles greater than the critical angle will correspond 

to a guided wave and the possible guided electromagnetic fields are limited as modes ( 

and superpositions of modes) of the guide. We have seen this in the preceding analysis of 

a metal waveguide. The following notes use the fact that the boundary conditions at a 

dielectric interface require that the tangential E and H fields are continuous across the 

boundaries involved in order to analyse this problem. For simplicity we will look at the 

transverse electric, TE, mode with its polarisation in the y direction and therefore 

completely tangential to the interface. With Ey there is an orthogonal H field with x and z 

components whose z component will be the tangential component. 

 

Using Maxwells curl equation for E 

Hj
t

H
E  




        (3.12) 

 

nC, C 

x = +d/2 

nG, G 

x = -d/2 

nC, C 

z 

x 
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where a time dependence for H of the form H = H0 exp(jt) has been assumed to obtain 

the time derivative. We find for Hz only one component of the curl 

 

)z,x(E
xj

)z,x(E
y

)z,x(E
xj

H yxyz

























11
  (3.13) 

 

a) Field variation in the x direction within the cladding. 

We have seen previously that due to the requirement that kz (=  ) matches at the two 

interfaces, kx in regions 1 and 3 must be entirely imaginary for guided modes ( C  ). 

 

 jnsinnjkksinkjkjk CGCGCCx  222
0

22222  (3.14) 

 

and the fields are therefore of the form A1exp(-x) in cladding region 1 and A1exp(x) in 

cladding region 3. This is the evanescent field just outside the guide exponentially 

decaying over a length scale represented by -1
. 

 

b) Field variation in the x direction within the guide. 

Within the guide there are positive and negative travelling waves in the x direction giving 

rise to standing waves described by cosinusoidal functions, A2cos(kGxx) for symmetric 

modes (even parity) and A2sin(kGxx) for anti-symmetric modes (odd parity). 

 

22
2  kkGx       (3.15) 

 

c) Field variation in the propagation direction , z. 

Within the guide the fields will propagate as exp(jz) in the z direction everywhere and 

from now on we write kz as , the propagation constant. 
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Electric Fields in Guide 

The electric fields may then be written, following the above prescriptions for the three 

regions, as follows 

 

    A1exp(-x)    x > d/2 

  

            cos(kGxx) 

  Ey(x,z) =  A2              exp(jz) d/2 <x < -d/2 (3.16) 

           sin(kGxx) 

 

    A1exp(x)    x < -d/2 

 

NB the choice of a cosine or sine variation for the field within the guide represents 

the possibility of even/odd parity (symmetric/anti-symmetric) modes respectively. 

 

Magnetic Fields in Guide 

The tangential magnetic fields are found by using )z,x(E
xj

H yz







1
 and may be 

written, following the above prescriptions for the three regions and taking the derivative 

wrt x of the electric fields given above, as follows 

 

    -A1exp(-x)    x > d/2 

 

 sin(kGxx) 

Hz(x,z) = 
j

1
 2AkGx             exp(jz)  d/2 < x < -d/2 (3.17) 

 cos(kGxx) 

 

    A1exp(-x)   x < -d/2 
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Note that the even/odd parity electric fields of 3.16 are represented by the sine/cosine 

variation in the magnetic fields in 3.17 after the differentiation wrt x. 

 

Guidance Conditions 

 

To obtain the guidance conditions for the guide, in order to find out which 

values of  represent a valid guided mode for the particular guide 

under consideration, both Ey and Hz must be matched at x = +d/2 and –d/2  

 

Symmetric guided modes. 

For symmetric E fields the field matching at 
2

d
x   gives 

 








 










22
12

d
expA

dk
cosA Gx 

    (3.18a) 

 

For symmetric H fields the field matching at 
2

d
  gives 

 








 











22
12

d
expA

dk
sinAk Gx

Gx


    (3.18b) 

 

Dividing equation 3.18a by 3.18b and re-arranging we have 

 











2

dk
tan

k

Gx

Gx


      (3.18c) 

 

This is the guidance condition for symmetric modes of the guide in its basic form. We 

shall simplify it in order to make it more tractable after obtaining the guidance condition 

for anti-symmetric modes of the guide. 
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Anti-symmetric guided modes 

For anti-symmetric E fields matched at 
2

d
x   

 








 










22
12

d
expA

dk
sinA Gx 

    (3.19a) 

 

For anti-symmetric H fields matched at 
2

d
x   

 








 











22
12

d
expA

dk
cosAk Gx

Gx


    (3.19b) 

 

Dividing (3.20a) by (3.20b) and re-arranging we have 

 











2

dk
cot

k

Gx

Gx


      (3.19c) 

 

This is the guidance condition for anti-symmetric modes of the guide in its basic form. 

 

We now seek to write these two sets of conditions, 3.18c and 3.19c, in a simpler form in 

order that a graphical representation of the conditions may be easily obtained. To do this 

we first need to define normalised transverse wavevectors. 

NB we have no need to apply the boundary condition at the 
2

d
  boundary as this 

would bring no new information. This is because the guide is symmetric and we go 

from 
2

d
  to 

2

d
  by inverting the symmetric guide with no actual physical change 

in the problem being considered. Anti-symmetric guides also exist where nC1  

nC3 and nG > nC1 , nC3. In that case both boundary conditions would be used. This 

does not concern us here. 
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Normalised Transverse Wavevectors, U, W and V and 

Characteristic Equation of Slab Guide 

 

Another way to represent the guidance conditions graphically is to rewrite them 

multiplying both sides by 
2

d
 as follows; 

 

The condition for symmetric modes 











2

dk
tan

k

Gx

Gx


     (3.18c) 

becomes 











222

dk
tan

dkd GxGx
    (3.20a) 

 

And the condition for antisymmetric modes 

 











2

dk
cot

k

Gx

Gx


     (3.19c) 

 

becomes 

 











222

dk
cot

dkd GxGx
    (3.20b) 

 

These new formulations of the guidance conditions lead us to define some new 

parameters of the waveguide, namely the normalised transverse wavevectors. 
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Normalised Transverse Wavevectors 

With the new formulation for the guidance conditions equs 3.20,  it becomes useful to 

define normalised transverse wavevectors in cladding and guide regions as follows: 

 

(i) By transverse we indicate that it is the wavevector transverse to the guide 

direction, ie. kx with which we are concerned 

(ii) We normalise them (make them dimensionless) by multiplying by a natural 

length of the guide, 
2

d
 , to give:  

 

a) The normalised exterior transverse wavevector , W , defined as 

 

222

22 d
k

dd
jkW CCx 








 


    (3.21a) 

 

b) The normalised interior transverse wavevector, U defined as 

 

22

22 d
k

d
kU GGx 








       (3.21b) 

 

The guidance equations may then be written 

 

UUW tan       (3.22a) 

 

and  

 

UUW cot       (3.22b) 

 

We can square and add equations 3.21a and 3.21b to give 

 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 72 

  2
2

2
0

22
2

2222

22
V

d
k)nn(

d
kkWU CGCG 

















   (3.23) 

 

where V is an extremely important parameter in the description of waveguides and fibres 

known as the normalised frequency. 

 

The equation  

222 VWU       (3.23) 

 

is known as the characteristic equation of the guide (or step index 

fibre). It is an easy equation to examine graphically. 

To examine the guidance conditions graphically we plot a graph of W vs U and on this 

graph we plot  

  UtanUW    even modes    

 

UcotUW   odd modes 

 

along with the characteristic equation rewritten as 

 

222 VUW  .  

 

This is the equation of a circle of radius V shown schematically on the next page along 

with the guidance conditions. 
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Where the UtanU (or –UcotU curve) and 22 UVW  curves (quarter circles) cross 

one another the values of W and U represent those for an allowed mode at that frequency, 

V, ie an allowed mode of the particular guide. Remember that V represents a particular 

value of frequency for a given guide (defined through nC , nG and 
2

d
). 

 

Single Mode Operation. 

From the graph we can see that as V is increased (the quarter circles have radius V), each 

time it increases by 
2


 another TE mode is allowed (there is an equivalent diagram for 

TM modes) and therefore the number of TE modes propagating, NP will be given by 



VV
NP

2
1

2















 .      (3.24a) 

Graphical solution of guidance conditions 

 

/2 4/2 3/2 2/2 

W 

U
2
 + W

2
 = V

2
 

UtanU 

(even mode) 

-UcotU 

(odd mode) 

V = 1 

V = 2 

V = 3 
V = 3.35 

V = 4 

V = 5 

U 
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Including TM modes then we have a total of  

 

2
4




V
NP        (3.24b) 

for a multimode guide. 

 

Generally the spatial distribution of light across the guide will be describable as a 

superposition of modes. It is desirable in many circumstances to allow only one mode to 

propagate. Notably, because phase and group velocities differ for different modes and if 

we desire to transmit a light pulse we reduce the temporal spreading of the pulse by 

allowing only one mode to propagate. From the graphical solution in the diagram, if V is 

less than /2 only the first even mode will propagate. Ie when the condition  

 

2
2

22
0 /

d
nnkV CG       (3.25) 

 

is satisfied only one mode will propagate. Thus for a given frequency  = ck0 we will 

have single mode propagation when 

 

22
CG

SM

nn

c
d








      (3.26) 

 

22
CG

CO

nnd

c





       (3.27 
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Modal Behaviour 

The crossing points of the two curves in the above figure represent allowed modes. If the 

UtanU curve is crossed an even, symmetric, mode (  xkcosAE Gx  ) is represented and 

an odd, anti-symmetric, mode (  xksinAE Gx  ) if the –UcotU curve is crossed. The 

modes describe the distribution of the electric field in the x direction across the guide 

with exponentially decaying fields into the cladding. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The above diagrams show the variation of Ey with x for the lowest four TE modes, two 

even and two odd. These will be the same as the variation of Hy with x for the lowest four 

TM modes.  

NB the mode is described by two suffices, TEmn , and the two suffices are to describe 

the field variation in the x and the y direction. We have assumed the extent of the 

guiding and cladding regions to be infinite in the y direction in order to simplify the 

problem. An actual guide would have a more complicated structure in order to 

contain the electromagnetic wave in the x and y dimensions. Specification of a mode 

would then require the two mode numbers m and n to be given. To find the fields 

and allowed modes for this problem is beyond the scope of the course. 

E 

E E 

E 

x 

z TE00 TE10 

TE20 TE30 
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We are now in a position to examine more closely the modal behaviour in two limits. 

 

From the graphical solution of the guidance conditions shown earlier we see that the 

value of U for the p
th

 mode lies between limits given by  

 

     
222

1
22

1


p
d

kppUp
PGxP 








   p = 1, 2, 3  (3.28) 

 

For odd p this represents a symmetric mode and for even p an anti-symmetric mode. 
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Limit 1. Low Frequency (Near Cutoff) 

Looking at the graphical solution we see that the pth mode tends to cut off as UP and V 

approach  
2

1


p  and W approaches 0. 

 

From the characteristic equation, 222 VWU  , we see that as this limit U  V is 

approached then we also require that  W  0.  

Recalling the definition of W (the exterior normalised transverse wavevector) 

 

0
2


d
W      0    (3.21a) 

 

The significance of this limit is realised where we know that the evanescent fields extend 

beyond the guide a characteristic distance -1
 and we see that this field is extending 

further for the p
th

 mode as the cutoff condition is approached and 0 . 

The first two even modes are illustrated below in this limit. 

 

 

 

The first two even modes near to cutoff with extensive leakage into cladding region 
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From the graphical solution of the guidance equations it is also seen that as this limit is 

approached and kGx is reduced, recalling the relation between kGx and frequency; 

 




 cosn
c

cosknk GGGx  0  

 

the frequency of the guided mode (or V) is also being reduced and there exists a 

frequency at which the mode is lost, referred to as the cut-off frequency for that mode. 

This cut-off frequency may be written as; 

 

   
2


pVU

COCO
PP        (3.29) 

 And  

 

   
22

0
22 

p
d

knnV
COCO CGP 








     (3.30) 

 

d

p
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c
nnk CG

CO
CGCO




















 2222

0    (3.31) 

or 

22

1

22
CG

CO
CO

nnd

c
p







     (3.32) 

 

Note that the p = 0 mode, the zeroth order symmetric mode has no 

cutoff and will propagate at all frequencies down to zero. 
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Limit 2. High Frequency (Far from Cutoff) 

We now look at the other, high frequency limit for the pth mode.  

 

     
22

2


p

d
kU

PxP 







    (3.33) 

 

As from the guidance conditions PPP UtanUW   and this tends asymptotically to 

infinity at this limit 

 

    
2

d
W PP       (3.34) 

 

As P  the evanescent field in the cladding becomes more and more closely 

confined to the interface ( 01 
P ) 

 

The first two even modes at this limit (far from cutoff ) and tightly confined to guiding 

region  are shown below. 

 

 

 

 

 

 

 

 

 

 

 

We can examine the high/low frequency limits within a geometric ray representation. The 

p
th

 mode propagating at a given frequency in a given guide (ie dimension d, nC and nG) 
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will have a unique propagation constant P and kGxP and it will travel at some angle P 

such that 

 

 pGx

p
p

k
tan


       (3.35) 

 

 

 

 

 

 

 

 

The angle at which mode p propagates is frequency dependent and will be determined 

from the guidance condition.  

Propagating in a given mode, p, and increasing frequency (or equivalently with the 

graphical solutions in mind, V) we have seen that UP or kGxP tend to asymptotic limits 

 

     
2

1
2


)p(

d
kU PGxP 








  as V is increased 

 

whereas  carries on increasing and approaches kG therefore as  is increased tanP 

increases more rapidly and P approaches 
2


. ie at higher frequencies the mode is 

travelling at increasingly grazing angles to the interface. 

As the frequency (or V) is reduced toward cutoff,  approaches zero and from the 

graphical solution we see that; 

 

 V
d

kU GxP 
2

    0
222

knn
d

Vk CGGx   

 

p 

k 

p 

kGxP 
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and 

   0knk CCP   

Therefore in this limit we have 

 

  
22

0
22

CG

C

CG

C

PGx

P
P

nn

n

knn

k

)k(
tan










    (3.36) 

 

alternatively written (form the right angle!) 

 

G

C
P

n

n
sin         (3.37) 

 

and P  C the critical angle. 

 

This is as we expect of course i.e. that as cutoff is approached for a given mode and guide 

by lowering the frequency the ray angle decreases until at cutoff it is equal to the critical 

angle. Any further decrease and no guiding occurs. 

 

Dispersion relations (  vs ) 

A major interest in waveguides is of course their use in transmitting information in the 

form of streams of light pulses. Of great importance in this application is the propensity 

of the individual pulses to spread in time as they propagate, a tendency which it is 

necessary to avoid in order that information is not degraded or lost altogether. The degree 

to which this occurs is termed dispersion and will depend on several possible mechanisms 

which we shall look at presently. For now it is sufficient to note that a pulse is made up of 

a Fourier superposition of cosinusoidal waves and to understand the dispersion we need 

to look at the phase and group velocities of the waves in any particular mode. To find the 

phase and group velocities of a mode it is necessary to know the relationship between  

and , (). We can find from the graphical solution a value of (kGx)P for any given kG 

and thus find P. Each mode will have a different dispersion relation, P(P). and in 
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general to find this will involve numerical or graphical solution. We may however look at 

our two limiting situations again. 
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Limit 1. Low Frequency (Near Cutoff) 

From the equation 222
Ck   and with   0 near cutoff as we saw earlier, 

 

2

22



















C

C

n
c

k


      (3.38) 

 

Giving the dispersion relation in the far from cutoff limit; 

 

   
Cn

c
       (3.39a) 

 

The mode number, p doesn’t appear in the dispersion relation in this limit, thus, the 

dispersion relation is the same for all modes and the phase velocity of the modes 

approaches 
Cn

c
, in the limit far from cutoff ie. it tends to the velocity of light in the 

cladding. We can easily understand why this should be the velocity of light in the 

cladding as the field extends a long way into the cladding when 0 and a larger 

fraction of the modal power is contained in the cladding regions. 

 

Limit 2. High Frequency (Far from Cutoff) 

For sufficiently large frequency we have already seen that the transverse wavevector kGx 

approaches  

    
d

p)k( PGx


  

We also have seen in this limit that  

    
c

n

n
c

k G

G

G


   

    
Gn

c
      (3.39b) 
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Again in this limit the phase and group velocity 

   
G

P
n

c
v    

G
G

n

c

k
v 







 

This is again as we should expect as at high frequencies  and consequently most of 

the mode is confined to the guiding layer and will travel with a velocity 
Gn

c
. 

In between these two limits the ,  curve will lie between the two lines of slope 
Gn

c
 

and 
Cn

c
. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The dispersion relation for the first three modes showing 

the cutoff frequencies. 

The dashed lines are straight lines with slope c/n2 and c/n1. 

p = 1 

p = 2 

p = 3 

c/n2 

c/n1 
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Numerical Aperture. 

Up until now we have assumed the guide region to be the source region ignoring one 

small matter, how did the light get there? If light is to be guided within a waveguide 

(dielectric slab or fibre) it has to be incident at the interface between the high index guide 

and the low index cladding at an angle greater than the critical angle when it will undergo 

total internal reflection.  

This immediately presents a problem as all rays are equally good if drawn running 

backwards (Fermats Principle). It is clear that there is no ray that will allow light from 

outside the guide to enter the guide AND be incident at an angle greater than the critical 

angle when it next arrives at the interface so how did a guided wave come to be in the 

high index region in the first place?  

There are at least three ways around the problem of coupling light to a guide from an 

external source  

(i) Light may be coupled from one guide or fibre to another using the evanescent 

fields that penetrate into the cladding. 

(ii) By using the evanescent fields associated with total internal reflection from 

prisms. 

(iii) By use of a diffraction grating etched on the surface of the slab guide. 

The first (and most obvious?) technique however, and one which is applicable to 

waveguide and fibre, is to focus light into the end of a guide/fibre. Indeed with laser 

diodes which tend to have a divergent output (broad angular distribution) compared with 

other lasers, a lens for focusing may not be necessary.  

 

To choose an appropriate lens for direct focus coupling it is important to consider the 

collecting efficiency of the guide/fibre. A quantity that is used to express this is the 

numerical aperture (NA) of the fibre. Indeed other optical systems from monochromators 

to cameras use the concept and the NA is related to the inverse of the f-number of a 

camera. We are interested in the NA in the context of guides. 

Consider the diagram below where an external ray of light in a medium of refractive 

index n0 (usually air) is introduced into a guide such that it is subsequently guided at the 

critical angle. The angle Max that the ray makes with the normal to the guide is the 
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largest angle compatible with guiding in the guide. Were it any larger then the internal 

angle would be less than the critical angle. The numerical aperture is defined such that 

the inverse sin of the NA is this maximum angle, sin
-1

(NA) = Max.  

 

 

 

 

 

 

 

 

 

 

 

 

 

The NA can be found by application of Snells law at the two interfaces of the diagram: 

 

n0sinMax = nGsin     (3.40) 

 

nGsinC = nC      (3.41) 

 

Further  

2

2
2 11

G

C
CC

n

n
sincossin     (3.42) 

 

Then using 3.42 in 3.40 

NA
n

n

n

n
sin

G

CG
Max 

2

2

0

1    (3.43) 
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Simplifying 

0

22

n

nn
NA

CG 
      (3.44) 

 

Often the external medium is air and n0 = 1, in this case the numerical aperture of the 

guide/fibre is given by ; 

22
CG nnNA       (3.45) 

 

It should be noted that the dimensions of the guide/fibre do not affect the numerical 

aperture. 

 

 

Example. 

For a highly collimated laser beam (parallel beam) with a beam diameter, D, of 2mm 

what choice of focal length lens, F, may be appropriate for a guide with numerical 

aperture 0.15? 

The lens is required to produce a cone of light whose half angle, , is sin
-1

0.15 = 8.6
0
 (see 

diagram below). At the focus of the laser beam a distance F from the lens (we have a 

parallel beam into the lens) the sin of the half angle would be approximately
F

D

2
. To 

obtain optimum matching to the fibre a half angle of 8.6
0
 would be appropriate. In other 

words 150
2

.NA
F

D
  or mm.

.

mm

.

D
F 666

30

2

1502



 . 

 

 

 

 

 

 

 

 

Max 

D 

f 

Lens 
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The system of laser beam plus lens can be assigned a numerical aperture 
F

D

2
and the 

numerical aperture of the lens system has been matched to that of the fibre. 

A diode laser will emit a diverging beam with a divergence angle Div and it could thus 

be assigned an NA = sin
-1
Div . If this does not match the NA of the fibre that it is to be 

coupled to, then an intervening lens would be required in order to maximise the coupling. 
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In summary for slab waveguides; 

The field internal to the guide is cosinusoidal with solutions separable into  

      xkcoszjexpE x   Symmetric Modes 

 

      xksinzjexpE x   Asymmetric Modes 

 

The field external to the guide (in the cladding) is exponentially decaying 

    xexpEE Int   

 

The guidance conditions for achieving a guided mode are 

   UtanUW      Symmetric Modes 

 

   UcotUW      Asymmetric Modes 

 

There is also a characteristic equation 

 

   222 VUW   

 

Which used with the guidance conditions allows graphical solution of the guidance 

problem. 

U and W are the Internal Normalised Transverse Wavevector and the External 

Normalised Transverse Wavevector respectively. 
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The guide will become single mode when 571
2

.V    

The guide can be characterised by a numerical aperture 

 

   22
CG nnNA   

 

 


