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5. INTERFERENCE. 

 

Introduction. 

Previously, we have spent time considering the amplitude of an electromagnetic wave 

and have focused on its vector quality when discussing polarization. This is an 

important property because it is frequently the case that we have several 

electromagnetic waves from different sources or more frequently different parts of the 

same source, and need to find the resultant field in a particular region of space by 

invoking the superposition of fields. In that superposition we obviously need to take 

account of the vector nature of the field by formally superposing those fields using 

vector addition. 

In the previous analysis of polarisation we noted the change in direction of the electric 

field vector as a result of superposition and that this lead to different polarization states, 

left and right handed elliptically and circularly polarised light and plane polarised light. 

In this section our interest is to be the change in amplitude of the electric field vector (or 

equivalently light intensity) as a result of superposition or addition of waves from 

multiple sources or from one source first split and then later recombined at some new 

location. This brings about a variety of effects grouped collectively under the title of 

interference; effects including, two slit interference (Young’s Slits), thin film 

interference and various interferometers.  

Diffraction phenomena are closely related to interference phenomena and are dealt with 

using the tools that are developed for interference in what follows. We will however 

leave diffraction as a topic to be considered separately. 

When considering interference it is convenient to continue using plane waves to 

describe the electromagnetic waves as these are more easily manipulated 

mathematically. It will later be important to consider how useful this plane wave 

approach may be in describing reality and this will bring us on to the concept of 

coherence. 
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Interference 

To establish the mathematical background required to describe interference we continue 

to consider the transverse plane wave written as; 
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or equivalently 
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as the most simple solution to the electromagnetic wave equation yet containing all 

essential features. 

As before we can establish the electric field in a region of space resulting from two 

separate sources of field by adding the two fields 

 

 21 EEE


         (5.2) 

 

We note that when discussing optics these fields oscillate at typically 5  10
14

Hz and 

any measurement we make will not be of the instantaneous field but of the light 

intensity I which is related to the time averaged square of the electric field as previously 

demonstrated 

 

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where  is the impedance of the medium (see previous notes) and the triangular 

brackets represent a time average over several cycles. 
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We may take the time average of each side and assume that everything takes place in 

the same medium and that therefore  is common to all fields, this will lead to the 

cancellation of  in much of what follows. 
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NB. It is important to note here that when taking the dot product in 5.4 we are taking 

the value of the projection of one field on the other. This automatically takes care of 

the possibility that the two fields are of different polarization when adding them to 

discover interference effects. 
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The third term is the interference term and is of interest to us in this section 
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NB Hecht chooses  

(i) to omit the impedance in his derivations, a perfectly reasonable course to 

take as the medium doesn’t change and the impedance will cancel when 

converting from fields to intensity. I choose to keep the impedance in as 

this is formally correct. 

(ii) To use the symbol  to represent the additional phase of the plane wave 

whereas I will use the symbol  to represent the additional phase and  to 

represent the total phase. 

(iii) To use  to represent the phase difference between two waves whereas I 

will use  to represent the phase difference between two waves. 

 

In order to evaluate the interference term we write our two electric fields as two plane 

waves. 

We previously called attention to one of the most important properties of the 

electromagnetic wave, its phase, and in the case of plane waves travelling in the z 

direction the phase is simply the argument of the cosinusoid or exponential, 

 tkz    
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and this phase does not depend on x or y once z has been fixed, ie. the phase is the same 

at any value of x and y for a given value of z and t, or otherwise stated the phase is 

constant over a plane perpendicular to the direction of travel hence the name plane 

wave. 

When we have two or more plane waves we need to specify the intrinsic phase of each 

wave as their peaks and troughs do not generally coincide in time and space. To malke 

things more general to account for this the phase of a wave traveling in the z direction 

becomes   tkz . 

For a plane wave traveling in an arbitrary direction the information concerning this 

direction is in the fact that k


is a vector (a fact up until now ignored when the light was 

assumed propagating in the z direction) and the phase is more precisely written as 

      trk


 

The two electric fields are then; 

  11011 cos   trkEE
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      (5.8a) 

  22022 cos   trkEE


      (5.8b) 

 

NB Whilst the wavevectors k are identified by a subscript 1 or 2 we have no subscript 

on . This is because we are using fields oscillating at the same frequency, the 

magnitude of the k vectors are the same for both fields and it is the direction of 

propagation of the wave (or equivalently wavevector) and the electric field vectors 

(polarisation and amplitude) that are different between the two fields. 

 

We can then find the interference term as follows; 
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We are going to want the time average of 21 EE


  and recognizing this we rewrite the 

equation with the time dependence separated out using the trigonometric identity 

    BABABA sinsincoscoscos   
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We have now separated the time dependent variable (represented in the cosinusoids) 

making the time average 21 EE


  easier to evaluate. The time average only applies to 

the sin
2
(t) terms and the cos

2
(t) terms and averaging over a time period, T, much 

greater that the period of the cosinusoids, 





2
 , they both average to: 

   
2

1
sincos 22  tt  .  

Also the time average of the product of the sin and cosine is zero; 

       0tsintcos  . 

 

This leads to a tremendous simplification in the time average of 5.10 to 
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Using further trigonometric identities; 
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we can simplify further and 5.11 becomes; 
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is the total phase difference between the two plane waves at the position, r


 , where the 

interference is to be determined. This phase difference is the sum of the phase 

difference due to different optical path lengths traversed by each wave and due to the 

initial phases of the two waves, 1 and 2. 

 

In a common situation, where the polarization of the two interfering waves are identical, 

ie. the electric fields are parallel; 
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We can write I12 in terms of intensities by using the earlier expressions relating fields 

and intensities  

 
 2

2
01

2
01

1
EE

I 



  
 2

2
02

2
02

2
EE

I 



   (5.16) 

 

 cos2 2112 III         (5.17) 

 

And the total irradiance (power per unit area or intensity) is then 

 

 cos2 2121 IIIII        (5.18) 

 

The total irradiance then varies from point to point in space as cos varies between +1 

and -1 

The maximum irradiance is  

 2121 2 IIIIIMax        (5.19a) 

when the phase difference is  = 0, 2, 4, 6 ……. 
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In this case of total constructive interference the two waves are in phase. 

And the minimum irradiance 

 

 2121 2 IIIIIMin        (5.19b) 

 

when  = , 3, 5, …… 

and in this case of total destructive interference the two waves are 180
0
 out of phase. 

 

Another commonly encountered situation is where the electric fields have not only the 

same polarization but also the same intensity, I1 = I2 = I0 . In this case the total 

irradiance may be written 
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Where the trigonometric identity 
2

cos2cos1 2 
   has been used. 

From this we have;  

  IMin = 0,  IMax = 4I0 

 

Identical arguments and results apply to the interference of two spherical waves 

emanating from two point sources S1 and S2 that overlap at a point P. 
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We have seen previously that the spherical waves propagating in free space may be 

written as  
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r1 and r2 are the distances of point sources 1 and 2 from the point of overlap, P or 

equivalently the radii of curvature of the two spherical waves. 

The phase in this case depends only on the distance r from the point sources and the 

surface of any sphere centered on a point source is a surface of constant phase. 

We can easily identify the phase difference between the two waves as 

 

    21210   rrk      (5.22) 

 

Using the expression for total irradiance as found previously for plane waves, 5.20, and 

the new phase difference 
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The condition for maxima and minima are as before ie.  = 2m for maxima and  

= (2m + 1) where m = 0, 1, 2, 3, …….. 

Using the expression for  we obtain constructive interference when 
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And destructive interference when 
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Both equations 5.24a and b describe a family of hyperboloids as depicted in the above 

figure where the hyperboloid surfaces represent the points P where 

constructive/destructive interference occur. If we hold the phases from the two sources, 

S1 and S2 , to be equal, ie, 1 = 2 and choose them to be zero then 5.24 may be 

rewritten as 
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Each value of m is represented by a hyperboloid with the positive values on the right 

hand side of the mid-line with r1
 
> r2 and the midline (or in 3D a plane perpendicular to 

the page) where r1 = r2 and the left hand side hyperboloids for r1 < r2 . We can imagine 

a screen placed as a plane intersecting this set of hyperboloids where at the points of 

intersection there is constructive interference. Any point, P, on this midpoint plane has 

r1 = r2 and therefore represents 5.25a with m = 0, the zeroth order interference fringe. 

r2 

P 

 

S2 S1 

r1 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 130 

These equations can be used to describe the appearance of interference fringes between 

two line or point sources such as Young’s slits. We now need to explore some examples 

of the ways in which interference effects are manifested. 

 

Interference Effects in Practice 

(i) Interference by Division of Wavefront. 

Young’s Slits 

Thomas Young, in 1801, was one of the first people to demonstrate the wave nature of 

light carrying out what has since become a classic experiment that has been applied to 

particles to demonstrate matter waves as well as light. In Young’s original experiment 

he used a pinhole with a monochromatic light source behind it to define a point source 

with two further pinholes in a screen at a distance from the source pinhole much greater 

than the wavelength of light. The two pinholes in the screen act as two separate but 

related light sources that have been derived from an original light source by division of 

the wavefront of that original source. That the two secondary sources are related allow 

interference effects to be observed by placing a second screen at a similar distance from 

the two secondary light sources. 

To find the light intensity at the second screen we need to add the electric fields of the 

two light sources taking into account the difference in phase between those two fields as 

usual. If the two holes providing the interfering sources are of the same size then we can 

make the approximation that the intensities of the two sources are equal and use 

equation 5.20 to find the intensity at any point P on the screen;  

 

  
2

4 2
0


cosII        (5.20) 

 

Before continuing further, it is necessary to keep the observation point P close to the 

centre of the screen and the diagram below is exaggerated for demonstration purposes. 

In fact we are interested in small values of . 
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It remains to establish the phase difference,  , at the observation point, P. 

The two point sources act as sources of spherical waves and we have the phase 

difference earlier in 5.22 

 

     )rr(krrk 21021210     (5.22) 

 

If the screen with the two point sources is far enough from the original point source, S, 

(orders of magnitude larger than a wavelength) then the spherical wave at S1 and S2 will 

be approximately plane and there will be no other source of phase difference apart from 

the path difference and the term (1 - 2) is zero. With the aid of the figure above we 

may find the path difference which is the same as the optical path difference, , (as the 

waves propagate in air with n = 1) and hence the phase difference  0k . 
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We may try to get a simplified expression for r1 – r2 beginning with the law of cosines,  

   Ccosab2bac 222    

as a applied to the triangle S1S2P 
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  asinarr  21      (5.30) 

Where we used the fact that a << r1 and r1  r2  to simplify 5.29 

And a further simplification 
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Equation 5.25a and b gave us conditions for maxima and minima respectively and using 

this result and 5.25 we find the condition for a bright fringe 
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Or in terms of position on the screen, y 
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Gives the position of the m
th

 bright fringe on the screen. The fringes are equally spaced 

with a separation  
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Now that we have  we can write the intensity as a function of y by using this in 5.20 
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With  

 

 



 sin

a
ksin

a

2
0

0

       (5.37) 

 

 

 

 

 

 

 

 

 

 

0 

y = 0s/a 

I 

y 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 134 

 is the phase difference between rays emanating from each slit when the screen is at 

infinity (ie the two rays are parallel) as shown in the diagram below. 

 

 BSk 10        (5.38) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We have found from this analysis that; 

 

(i) to have well separated fringes we need a small separation, a, between 

pinholes or slits and that  

(ii) longer wavelengths will give rise to broader fringes. 

 

We have seen that Young had some stringent requirements on the geometry of his 

experiment in order to see the interference fringes; 

 

(i) The slits cannot be too far apart and generally a << s 
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(ii) The original source must be at a distance, d, from the screen such 

that the spherical wave approximates a plane wave in order that 21    

(iii) Fringes will only be observed near the centre of the screen where 

21 rr   is not too large. 

(iv) The value of 
a

s  must be large if fringe separation is to be large 

enough to observe due to the small size of the wavelength of visible light. 

 

All of the above apart from (iv) result from the lack of coherence in the sources 

available to Young. We return to the question of coherence after we examine the second 

type of interference. 
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Interference by Division of Amplitude. 

An important way of achieving the conditions for exhibiting interference effects, ie. 

obtaining two or more oscillating electric fields, sending them on different paths before 

recombining them to observe interference is to split a primary wave into two separate 

secondary waves by partial reflection of the primary and using the reflected and 

transmitted waves as the secondary waves to be recombined. This may be achieved in 

many ways, sometimes coming about in a quite natural manner while often achieved 

with a particular optical arrangement. 

 

Dielectric Thin Film Interference. 

One of the most commonly observed examples of interference through division of 

amplitude occurs where light incident on a thin layer of dielectric undergoes reflections 

from the top and bottom surface of the layer and under the right conditions constructive 

or destructive interference occurs. Examples of this are the colour effects seen when a 

thin layer of oil is floating on water and the colours seen in a soap bubble. The 

interference effects caused by multiple reflections in the thin scales of a butterflies 

wings give rise to their spectacular iridescence. The effect is also of use in many 

technological applications where thin layers are designed and constructed with the 

intention of creating thin dielectric film interference. 

The diagram below indicates schematically how interference effects are produced as a 

result of partial reflection/transmission at a thin dielectric film. For purposes of this 

analysis the dielectric film of refractive index, nF , is standing on a substrate of 

refractive index, nS, and light is incident from a medium of refractive index, n0 

(typically air). There will in general be multiple reflections at the air/film interface and 

at the film/substrate interface. Transmission will also occur into the substrate. We can 

use equations 5.19 to discover the conditions for constructive or destructive interference 

by first calculating the phase difference between the two rays, 1 and 2, shown 

propagating upwards from the top of the film in the lower figure. 

The optical path is the real space distance traveled multiplied by refractive index of the 

medium and therefore the optical path difference, , between rays 1 and 2 after their 

separation on arrival at A is  

   ADnBCABnF 0       (5.39) 
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And the phase difference due to the optical path difference is the optical path difference 

multiplied by the magnitude of the wavevector in free space (vacuum). 
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NB. For the total phase change we need to include the phase change that occurs on 

reflection which may be different for each ray as we recall from the Fresnel 

equations. Thus, 
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          (5.41) 

From geometry and Snell’s law we obtain everything in terms of T, 
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whence 
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T
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 (5.42) 

 

It is often convenient to have the phase difference in terms of the angle of incidence and 

we can use Snell’s law to achieve this 
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 (5.43) 

 

Before we address ourselves to the outstanding question of the reflection phase shifts 1 

and 2 we note that nF may be greater than or less than n0 and nS, eg an air gap between 

two parallel separated glass slides or a freestanding soap film in air respectively. We 

also recall that there are two types of reflection namely internal reflection where 

the refractive index of the sourced region is greater than that of the unsourced region 

and external reflection where the refractive index of the unsourced region is 

greater than that of the sourced region. With these possible types of reflection in mind 

we can identify several possibilities that apply at near normal incidence,   30
0
; 
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(i) External reflection plus internal reflection 

An example is the soap film/bubble free standing in air, nF >n0 = nS = nAir . In this case 

for near normal incidence,   30
0
 , we will have     12 and the total phase 

difference is  

 

 



  T

F dn
cos

4

0

       (5.44) 

 

(ii) Internal reflection plus external reflection.  

An example of this is an air gap between two glass slides. Again for near normal 

incidence    12  and the total phase difference is 

 

 



  T

F dn
cos

4

0

       (5.45) 

 

(iii) Both reflections are internal (or external) 

If the reflection at the top and bottom interfaces are both internal reflections (or external 

reflections) the factor   012   and 

 

 T
F dn





 cos

4

0

         (5.46) 

 

(iv) Reflections from partially metallised surfaces 

Examples are a thin metallic film or two partially metallised surfaces separated by a 

dielectric (eg. air gap between two partial mirrors. In this circumstance then 021    

as there is no phase shift upon reflection at a metal where boundary conditions require 

that the light electric field is zero and again 
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(i) Maximum Reflection 

As we saw from equation 5.18, giving the intensity of the recombined light in terms of 

the intensities of the original waves and their phase difference, there is from 5.19a a 

maximum irradiance where cos = 1 ie. when  = 2m, m = 0, 1, 2, 3……. 

We can apply this to any of our four situations above and taking scenarios (iii) or (iv) 

we find that maximum light is reflected when 

 

 
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
 m

dn
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F 2cos
4

0

        (5.48) 

 

Or re-written the condition becomes 

 

 m
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F 


cos

2

0

        (5.49) 

 

The LHS depends on d, 0 or  and if two of these are held constant we can obtain 

maximum reflected irradiance by varying the other, eg. Keeping d and 0 fixed we can 

obtain maximum irradiance by varying .  

 
d

m
dn

m F

F
T

22
cos 0 

         (5.50) 

for maximum irradiance. 

We can note here that for the special situation of normal incidence ( 1Tcos ) the 

condition for maximum reflection is 

 

  
d

m F

2
1


   or  dm F 

2


 

 

Physically this represents half integer wavelengths, F fitting between the two surfaces 

of the film. This is easily recognized as the requirement that standing waves exist 

between the two surfaces for maximum reflection. 

 

Alternatively, with a white light source, at a given angle for a fixed thickness, only 

wavelengths satisfying 5.50 will be strongly reflected. 
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 (ii) Maximum Transmission 

From 5.18 and 5.19b we have minimum reflection when  = , 3, 5….. This is 

also the condition for maximum transmission. 

 

  



 12cos

4

0

 m
dn

T
F       (5.51) 

Or re-expressed; 

    
d

m
dn

m F

F
T

4
12

4
12cos 0 

       (5.52) 

 

So far nothing has been said about the intensities of the two combining beams, I1 and I2 

and so nothing is known about the actual irradiance, IR , achieved in the reflected beam. 

Neither has the possibility of multiple reflections been considered nor the intensity of 

the final transmitted beam, IT. We return to this when multiple beam interference and 

the Fabry Perot interferometer are discussed. 
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Multiple Beam Interference. 

When considering the thin dielectric film interference it was recognized that multiple 

reflections could occur and this possibility is now explored. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

refractive index nF embedded in a medium of refractive index n1. Further, we consider 

th  

Consider the above system of a thin dielectric film of thickness t and e film to be non 

absorbing at wavelengths of interest. An electromagnetic wave impinges from the left 

hand side and is partially transmitted and partially reflected undergoing a series of 

subsequent reflections and transmissions at the left hand and right hand interface. To 

find the total reflected or transmitted fields we need to add all of the reflected or 

transmitted waves taking into account phase shifts between the waves as usual. We 

denote the fraction of the electric field amplitude transmitted on entering the film as t 

and on leaving the film as t
/
 and the fraction reflected at the external interface as r and at 

the internal interface as r
/
. These quantities were discussed earlier when the Fresnel 

equations were established and they depend, in general on the angle of incidence and 

the difference in refractive indices at the interfaces. In particular we established earlier, 

using an argument due to Stokes, that r(I)= -r
/
(T), where I and T come as a pair of 

angles related by Snell’s law. 

r
 r

/ 

t 

nF 

d 

n1 n1 

t
/ 
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The above diagram establishes the sequence of reflected partial amplitudes and of 

transmitted partial amplitudes. The reflected partial amplitudes are as follows 
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The total reflected amplitude is simply the sum of the partial amplitudes with account 

taken of phase differences. We can assume that the polarization is unchanged upon 

reflection/transmission as the rays remain parallel and we can for this reason safely treat 

the electric field as a scalar. 

 

Reflected rays. 

When summing the reflected rays we need to note  

(i) All but the first reflection only undergo reflections inside the film. There is 

therefore a phase difference between the first and the rest manifest in the 

minus sign in the relation between r and r
/
. 

(ii) Each other reflected ray undergoes an odd integer multiple of internal 

reflections , 1, 3, 5 etc.  

(iii) The geometric path difference between adjacent reflected rays in the above 

diagram is Tcosd 2  and the phase difference TF cosdn 





0

4
 .  

(iv) The internal incidence angle, T < C  

ie. we have light escaping the film and so no total internal reflection and thus 

the internal angle is less than the critical angle. In this case for light polarised 

perpendicular to the plane of incidence (the page) the phase change on 

reflection is zero. For light polarised parallel to the plane of incidence the 

phase change is either zero or . There are an even number of additional 

reflections for each adjacent ray and therefore a phase shift of 2, ie. the 

same relative phase and thus no phase change. 

 

We may now choose to examine some simple situations as follows; 

1. When the optical path difference (geometric path difference multiplied by 

refractive index of the medium) between two adjacent rays is equal to an integer 

multiple of wavelengths 

 

  0cos2  mdn TF       (5.53a) 

Otherwise stated 
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
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0

     (5.53b) 
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In this circumstance there is no effective phase difference between the reflected rays 

other than the first with a phase difference of  taken care of by a minus sign. The sum 

of electric fields is then 
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0

/
00  rrrrrEttrEE r     (5.55) 

 

Recalling that a geometric progression is  
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The term in brackets on the RHS of 5.55 is a geometric progression with a = r
2
 thus  

 
2
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         (5.57) 

 

Recalling from the Stokes relation that  

 

 21 rtt /            (5.58) 

 

We get the reflected field as E0r = 0 

 

The condition that the optical path difference between adjacent rays is an integer 

multiple of  means that the first reflected ray is exactly cancelled by the sum of 

second, third and subsequent reflections. In the absence of any absorption this is 

precisely the condition for all of the incident power to be transmitted. 

 

2. The second special case we can examine is where 0
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This leaves the first and second reflected waves in phase and all other partial waves 

2
 out of phase with their adjacent partial waves. The resultant scalar amplitude is 

now 
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Rewritten, 
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The series in brackets is 
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  ie. another geometric 

progression where we have used a = -r
2
 for our geometric progression. 

And now 
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Again using the Stokes relation 
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This situation, 0
2

1
cos2  








 mnd FT , gives the maximum reflected and minimum 

transmitted wave. We find the intensity by the usual means of taking the time average 

of the square of the electric field divided by the impedance of the medium in which the 

wave is propagating, 1. 
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    (5.63) 

 

Where we have used the fact that the intensity reflection coefficient, R, and the 

amplitude reflection coefficient, r , are related by Rr 2  

 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 147 

3. We now consider the general case and include the amplitude and the phase 

explicitly where the reflected partial amplitudes including the phases are now 

rE0exp(jt) 
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Writing, as usual, 
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as the total phase difference due to the path difference between adjacent reflected 

waves , 2nFdcosT ,plus the phase difference, , due to the extra reflection suffered by 

each successive reflected wave. 
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Rewritten as 
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           (5.66) 

The series on the RHS converges if 12/  jer  

 

The geometric progression in the curved brackets on the RHS of 5.66 has 

j/ era  2  and the total reflected field may be compactly rewritten as 
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We can again use the Stokes relations, /rr 
 
 and 2/ 1 rtt   to obtain the reflected 

field in a more compact form as follows  
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Getting everything over a common denominator 
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Finally 
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The reflected intensity is as usual given by the time average of the square of the electric 

field divided by the impedance. There is only the one time dependent exponential and 

the time average will as usual provide a factor 
2

1  thus 
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Noting that the incident light intensity 
1

2
0

2

E
Ii   and also using de Moivre’s theorem 

this can be written more compactly as 
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We can do the same for the transmitted waves by adding all the partial transmitted 

waves 
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The geometric progression in square brackets on the RHS has  jj erera   22/  

again and 5.72 may be compactly rewritten as 
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Multiplying E by it’s complex conjugate and dividing by 21 gives the intensity as usual 

and for the transmitted intensity we obtain 

 

 
 

 
 cos21cos21

)1(

2

2/

24

22

0
RR

tt
I

rr

rI
I i

i
t







     (5.74) 

 

Looking at 5.70 and 5.74 it is difficult to interpret what is occurring physically. To 

make each of these expressions more transparent we finally use the trigonometric 

identity, 
2

sin21cos 2 
   to get expressions for the reflected and transmitted 

intensities from 5.70 and 5.74 
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And 
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It is clear now that to maximize the transmitted intensity the denominator in 5.76 needs 

to be minimized, ie. the sinusoid in the denominator needs to be zero and therefore 

 


m
2

          (5.77) 

for maximum transmission. Bearing in mind the relation, 5.64, between phase 

difference and wavelength, 



  TFdnk cos2

2

0
0  , this is also a 

condition on wavelength; 

By rearrangement of 5.64 with the condition 5.77 we obtain this condition 
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where we take   0. 

The physical meaning of 5.78 becomes clear when we consider normal incidence on the 

film and 5.78 becomes 

 dm F 2
2




         (5.78a). 

This is the requirement that half integer wavelengths of the wave fit between the two 

inner surfaces of the film, ie. that when standing waves are supported there is maximum 

transmission. 
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What is required to maximize the reflected intensity is not so clear but its minimum is 

zero where the sinusoid is zero in the numerator of 5.75, and therefore 


m
2

. 

Unsurprisingly we obtain minimum reflection where transmission is maximum. We will 

examine this more closely. 

First we introduce a quantity that appears frequently from now on called the coefficient 

of finesse, F which we will see is a commonly used figure of merit for a Fabry Perot 

device 
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And obtain a compact form for the reflected and transmitted intensities 

 

 

2
sin1

2
sin

2

2





F

F

II ir



         (5.80) 

 

 

2
sin1

1

2 
F

II it



         (5.81) 

 

In the absence of absorption as is the case here, conservation of energy requires that the 

transmitted and reflected intensities should add to the input intensity 

 

 rti III            (5.82) 

 

Checking  
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As noted earlier maximum transmission occurs where the denominator of 5.81 (or 5.76) 

is as small as possible which is when 0
2

sin2 


. 

When this condition holds  

 

(i) the maximum transmitted intensity is 

 

   iMaxt II           (5.84) 

And  

(ii) the minimum reflected intensity as we have seen before is 

 

   0MinrI  

 

(iii) the minimum transmitted intensity occurs when the denominator of 5.79 (or 

5.76) is as large as possible ie. for 1
2

sin2 


 or for 
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And the value of the minimum transmitted intensity  using 1
2

sin2 


 in 5.79 is; 
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           (5.86) 

     
 

 2

2

1

1

R

R
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


      (5.87) 

And finally 

(iv) the maximum reflected intensity occurs when 1
2

sin2 


 and is 
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The fractional reflected and transmitted intensities (compared to input) are given by 

5.78 as 

 

 

2
sin1

2
sin

2

2





F

F

I

I

i

r



         (5.89) 

and 
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2
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t  A()       (5.90) 

 

The function 

 
 2sin1

1

F
 A()        (5.91) 

appears elsewhere in physical problems and is a tabulated function called the Airy 

function. The fractional transmission and reflection are plotted below. 
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Summarising. 

1. Reflection 

First draw the diagram with the multiple reflections and then list and add together all of 

the partial reflected waves. 
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Use the Stokes relations, 21 rtt /   and /rr   to tidy up 
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Now find the intensity by the standard route; 
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Tidy up using De Moivre 
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Introduce the coefficient of Finesse; 
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2. Transmission 

First draw the diagram with the multiple reflections and then list and add together all of 

the partial reflected waves. 
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Transmission through thin film vs 

phase shift, r = 0.2, 0.5, 0.9
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The reflection/transmission intensities from a thin dielectric film as described by 

equations 5.89 and 5.90 are shown in the two graphs above where three values of r are 

used, the sharpest minima/maxima occur for the largest values of r. 

There is a maximum in the transmission where  is an integer multiple of 2 and as r 

is increased this maximum becomes increasingly sharp around these values. The inverse 

is true of the reflection. Such behavior suggests potential use as a tuned bandpass filter. 

It is important to pause and to recall once again what it is that  represents physically. 

It represents the difference in phase between adjacent reflected (or transmitted) waves. 

and that phase difference is determined by the extra distance traveled by one wave with 

respect to the other and so varies with angle of incidence and film thickness. It also 

depends inversely on the wavelength of the light within the film, 
Fn

0
  . This 

means that the horizontal axis, , in the above graphs could as easily be a plot of either 

inverse wavelength or of angle of incidence. We see this when writing the phase 

difference explicitly as TFdn 


 cos22
0

 . 

In other words there are two variables that could be plotted on the x axis in place of , 

namely by holding T constant the inverse wavelength, 1
0
  (or frequency 

0

1


 c  ) 

could be plotted on the x axis with a series of wavelengths/frequencies at which sharp 

resonant transmission occurs given by  

 

TFdnm 



 cos

2
22
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 , T
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m

dn
 cos

2
0  , 








 

F
T

dn

m
cos

2

01 
  

NB the resonant frequencies are equally spaced the wavelengths are not! 

In the above equations the integer m is also known as the order of the transmission (or 

reflection). An extended white light source would then be split into transmitted spectral 

components where the wavelength criteria is satisfied. Depending on the order, m, this 

would be a wavelength band around some peak that is transmitted whilst the other 

wavelengths are reflected and lost until a second order (third order etc) transmission 

peak allows further transmission of another band of wavelengths around a second (third 

etc.) wavelength. The peak transmission (or reflection) will also depend on the viewing 

direction and it is this that gives rise to the colours observed in a thin oil film floating on 

water or the colours observed in a soap bubble. 
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Looking at the above graph for transmission through the thin film we see an 

increasingly narrow range of  (or T or 0 ) over which transmission occurs as r is 

increased. Ie. the transmission of the thin film may be highly tuned. This highly defined 

directionality and wavelength range, comes about due to the large number of coherent 

sources that contribute to the overall beam. 

The thin film dielectric with multiple interference clearly demonstrates useful properties 

and the potential for constructing a useful device. The Fabry Perot interferometer is 

an engineered structure using the basic principles that have just been discussed and 

finds many uses in optics from spectroscopy through high resolution optical filters to 

laser resonators. For this reason it is worth examining in some detail. 

 

b) Fabry Perot Interferometer. 

One of the simplest realizations of an optical structure, using the principles of the 

multiple reflection interference of the thin film previously discussed, is to take a pair of 

parallel partially reflecting surfaces separated by a careful engineered spacer. 
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The above diagram shows such a structure, known as a Fabry Perot interferometer or 

Fabry Perot etalon, with a pair of metallised partially reflecting surfaces, in this case 

evaporated onto two transparent substrates. The reflecting surfaces are held precisely 

parallel to one another and usually the substrates will be slightly wedged on the non-

metallised surface in order to suppress the formation of secondary parallel reflecting 

systems that would interfere with the operation of the primary system. The two 

reflecting surfaces of the primary system are held at a precise separation, d. There is in 

the example shown an extended light source to the left and a screen to the right. 

Choosing a ray from a given portion of the extended source traveling at an arbitrary 

angle, its progress is followed as it undergoes multiple reflection/transmission events 

before the transmitted rays from this one coherent point source ar collected by a second 

lens and brought to a focus at some point P on a viewing screen (photographic plate, 

retina etc.). Of course, any ray traveling at the same angle from an equivalent point on 

the extended source (at the same distance from the system axis) would have been 

brought to a focus on the screen at the same distance from the system axis resulting in 

the appearance of a series of concentric rings centered on that axis. 

 

This system has the essential characteristics of the previous situation examined with the 

exception that; 

(i) The metallised reflecting surfaces will be a source of dissipation/absorption and 

this will mean that the Stokes relations that were used frequently in the previous 

discussion no longer hold ie. 

tri III    1 RT  and 12/  rtt  

Rather these are modified to account for the absorbance, A, in the following way; 

 

Atri IIII   1 ART       (5.92) 

Where 5.92 again represents the conservation of energy but with the dissipation 

(absorption) term included. 

(ii) The gap, d, is much larger than in our thin film scenario and can be from microns 

up to centimeters as it is now a factor under control of engineering. 
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and 

 

(iii) Metallic films will introduce a phase shift, (), upon reflection which may not 

be zero or  and that may depend on the angle of incidence, T. 

Now, the phase difference between two successive waves is as usual 





 2cos

4

0

 T
Fdn

       (5.93) 

 

If we consider the action to take place at angles close to normal incidence, ie.   0 then 

 is approximately constant and because we are discussing a system where d >> 0 the 

first term on the RHS dominates and the second term, 2, may be neglected. This allows 

us to re-express the transmission as given for a thin film in 5.74 as 
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Or, using the trigonometric identity, 
2

sin21cos 2 
   to re-express 5.94 as 
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This re-expression of 5.94 makes it much easier to understand what is happening with 

the transmission as it did with the thin film analysis as we simply get maxima when the 

sinusoid in the denominator goes to zero 

We can use 5.80, T = 1 –R - A , to re-express this as 
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Where A is the Airy function. For the case of zero absorption examined previously we 

had 
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which is what 5.96 reverts to if we make A = 0. 

 

In the current case with absorption according to 5.96 we have maximum transmission 

when 0
2

sin2 


 or when  m2  as previously only now the maximum 

transmission is reduced by the absorption to  
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We can use 5.97 to normalize the transmission to the maximum transmission as given 

by 5.97 

 

 
 Maxt

t

I

I
 A     (5.98) 

The normalized intensity is given by the Airy function as in the first of the two graphs 

shown below. Here, the effect of the absorbance has been included. The effect of A is to 

reduce the maximum value of the transmission.The graphs show the transmission of the 

Fabry Perot with an absorbance, A = 0.1 as a function of phase difference (equivalently, 

 or 0 ). Also shown is the normalised transmission. Note in the first that the maximum 

is well below 1 as a result of the absorbance. In those two graphs the amplitude 

reflectance is changed from 0.9 to 0.7 and this has big effects on the transmission with 

the width of the transmission getting much larger and the transmission never dropping 

to zero in the case of a reflectance of 0.7. 
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Transmission of a Fabry Perot with r= 0.9, A = 0.1
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When using the Fabry Perot as a filter or monochromator (wavelength selective device 

cf prisms and gratings) several important questions arise concerning the resolution of 

the Fabry Perot, ie. how well defined is the transmitted wavelength/frequency?  

To answer this we need to look at a number of things. 

 

i) The free spectral range. This is the separation of the transmission peaks of 

adjacent orders which occur at  = 2m so peaks are separated in phase by 2. The 

separation of the peaks of adjacent modes in terms of wavelength is called the free 

spectral range of the Fabry Perot and indicates the wavelength range over which the 

interferometer may be operated without adjacent modes mixing. We see how this 

matters by considering operating the interferometer as a variable plate separation device 

and as d is altered  will change with it until at some point  satisfies the condition 

for maximum transmission and the light is transmitted. We know d and  and should 

therefore know . But there is a problem as we don’t know m. There is a second 

transmission peak in the neighbourhood of this one where the order number (or mode 

number) is m + 1 and we may have a wavelength corresponding to m+1 and not m. To 

avoid any such confusion we need to know how far apart the two transmission windows 

are in terms of wavelength (or frequency). The peak separation or free spectral range is 

simply found as 

FSR
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          (5.100) 

 

The free spectral range in terms of frequency is  
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          (5.101) 

 

FSRTF
FSR

mm

c

dn

c




)1(cos2 
      (5.101a) 

 

Generally the device is used with an air gap and at normal incidence in which case 

5.100 simplifies to 
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And 5.101 simplifies to 
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Where T is the time taken for the wave to travel from one reflecting surface to the other 

and back again, also known as the round trip time within the interferometer. 

If we make the free spectral range larger than the interval over which we are looking for 

any emission the problem of confusing orders can be avoided. 

 

ii) How wide is the window of transmission  

As a measure of the width of the transmission window we look for the value of  

where the maximum transmission has dropped by half, 
2

1  and the width of the 

transmission window is defined as twice this ie Full Width at Half Maximum, 

2
12  FWHM  , a commonly employed criterion.  

The curve is simply the Airy function A () and we need to know where this has 

dropped by 50%. 
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          (5.102) 

 

Re arranging to make 
2

1  the subject of the equation 
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FR

R 1
sin2

4

1
sin2 1

2
1

2
1

 


      (5.105) 

 

For large coefficient of finesse, F, the approximation 
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may be used 
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And the width of the peak, at half the maximum is  

 

 
F

FWHM
4

2
2

1    

 

It is the case that the phase cannot be measured and only relative phases have any 

practical effect. We are more interested in asking questions about wavelength or 

frequency when discussing light waves. These are, of course, related to the phase as 

seen many times, 



 2cos

2
2 mdn T

m
F   for maximum transmission of the m

th
 

order wavelength m. If we know about the phase but wish to know about the 

wavelength we proceed as follows; 
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m

F dn
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Using the previously established condition for maximum transmission of m
th

 order 

 

 
m

dn TF
m
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
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We may simplify 5.108 
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And used in normal incidence 
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m
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2
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
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And the resolution of the Fabry Perot used in m
th

 order is defined as 
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m F
m


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
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2
       (5.110) 

 

And used in normal incidence 

 

 F
m

FWHM

m

2






        (5.110a) 

 

We may want this in terms of frequency where we use the relationship between 

frequency and wavelength, cmm   for the m
th

 order. Using a procedure identical to 

that used to translate from phase to wavelength we translate from wavelength to 

frequency as follows; 
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Therefore the resolution in m
th

 order is as previously found for this quantity in terms of 

wavelength 
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m F
m







sec

2
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NB the minus signs that occur in these equations when differentiating has been 

subsequently ignored as the meaning is simply that for example on going from  to  

+  the frequency will go from  to  -  and in this context it carries no 

significance. 

 

iii) What is a good figure of merit when defining the performance of a Fabry Perot? 

Comparing the separation of peaks or free spectral range with the width of a single peak 

we may find a figure of merit for the resolution of the Fabry Perot.  

The ratio of peak separation to peak width is known as the finesse, F  ,  
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Where we assume m >> 1 

We see by comparing the frequency resolution expression 15.96 And the definition of 

finesse, F   that the frequency resolution of the m
th

 order may also be written as 
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m F
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2
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mF secT  (5.114) 

 

For normal incidence 
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 mF    (5.114a) 

 

and 

    F
m

FWHM

m

2






m F    (5.110b) 

 

NB The finesse and the coefficient of finesse , while closely related are not the same 

thing!! 

 

iv) What is the resolving power, R , of the Fabry Perot? 

This is a question that asks, “ if we have a source of two wavelengths very close 

together what is the minimum wavelength separation, Min that a Fabry Perot would be 

able to “see””? 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The criteria for being able to resolve two slightly different wavelengths is that their half 

maximum height values just cross as shown in the diagram above. 
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The resolving power is simply defined as 
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Finally, if we know F or F we can find the minimum resolvable wavelength difference 

for a given order, m 
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Michelson Interferometer. 

Another well known amplitude splitting device for recombining two beams to produce 

interference is the Michelson interferometer.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The basic structure of a Michelson interferometer is laid out in the above figure. Light 

from a light source, S is incident upon a 50:50 beam splitter, BS, inclined at 45
0
. The 

beam is split into two beams of equal intensity one traveling to mirror M1 , the other 

traveling to mirror M2 before both are reflected back to the beam splitter and on to a 

detector, D. One of the mirrors should be on a moveable track. A compensator, C, is 

placed in one of arm of the interferometer to allow for the fact that the beam traveling 

via M2 has to traverse the beam splitter twice whereas the beam traveling to M1 

traverses the beam splitter only once, the compensator is to ensure that the optical path 

S 

BS 

M2 

M1 

C 

D 
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lengths are equal. At the detector interference fringes are formed. Considering the 

symmetry of the situation we can see that these will be in the form of concentric circles 

of light and dark. In order to understand these fringes we need to construct a virtual lay 

out of the optical components from the point of view of an observer looking from the 

detector towards the beam splitter. The observer will see a co-linear view of the source, 

the two mirrors and the image of the source in each mirror as shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Taking an arbitrary point on the source to act as an object O that is an individual source 

of spherical waves and choosing an arbitrary ray from this point source to follow around 

the system, the two mirrors with a path difference of d = s1 – s2 will give rise to two 

virtual images, I1 and I2 that will behave as two coherent point sources to be recombined 

at the detector. The irradiance will be given therefore by 5.18. The path difference, PD, 

between the two virtual sources is  

 cos2dPD    



 cos

2
2cos2

0
0 ddnk    (5.115) 

For constructive interference cos = +1 or  = 2m, thus for constructive 

interference the condition is 

 0cos2  md   

Any point source object O at the same radius from the centre of the source will satisfy 

the same equation and the result is a series of concentric rings at the detector of light 

and dark. 
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c) Mach Zhender Interferometer. 

The Mach Zhender interferometer is another simple design that achieves interference 

effects by division of amplitude. It has similarities with the Michelson previously 

examined. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

There are two arms that take light from the source to the detector, the amplitude 

splitting occurring at the first beam splitter, BS1 . If the lengths of the two arms are kept 

equal there will be no phase difference,  = 0, and constructive interference occurs at 

the detector. The use of the device comes in applying it to analyse phase changes in 

some experimental system that can be placed in one of the arms. If the experimental 

system causes a change in the phase of the light traveling in that arm there will be a 

phase difference,   0 and interference fringes will be detected by the detector. The 

fringes can be used to analyse the experimental system and how changes made to that 

system affect the interaction of the system on light.  
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