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Question 1 (a) Given the following system of equations

x1 + 3x2 + 2x3 − x4 = 1

x1 + 6x2 + x3 + 2x4 = 1

3x1 + 15x2 + 4x3 + 3x4 = 3,

write down the augmented matrix for the system and use Gaussian elimination to
bring the augmented matrix to row echelon form. [9]

Further, find the solution set of the system. [6]

(b) Let A be an n×n real matrix. State a necessary and sufficient condition, in
terms of the determinant of A, for A to be invertible. [2]

Find all cofactors Cij (i, j = 1, 2), and the inverse, of the real matrix(
a b
b a

)
where a 6= b. [8]

Question 2 (a) Use Gauss-Jordan inversion to find the inverse of the matrix

A =

1 0 1
0 1 1
1 1 1

 . [9]

(b) Let V and W be real vector spaces and let L : V −→W be a mapping. Explain
what is meant by saying that L is linear. [3]

Let L : R3 −→ R3 be the mapping given by

L

xy
z

 =

 x+ z
y + z

x+ y + z

 for

xy
z

 ∈ R3.

Show that L is linear. [5]

Find the matrix representing L with respect to the standard basis {e1, e2, e3} in
the domain and codomain. [5]

Using (a), or otherwise, find the inverse L−1 : R3 −→ R3 of L. [3]
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Question 3 (a) Let V be a subspace of the Euclidean space Rn. Explain what is
meant by saying that a set {v1,v2, . . . ,vk} of vectors in V is

(i) linearly independent, [3]

(ii) a spanning set for V , [3]

(iii) a basis for V . [2]

(b) Let

A =

1 −1 3 1 2
2 −2 6 3 0
3 −3 9 4 2

 .

Find a basis for the row space row(A) of A. [5]
Determine, giving an argument, the nullity of A. [3]

(c) Let V be a subspace of R4 spanned by the linearly independent vectors
1
0
1
0

 ,


3
0
1
1

 and


−2
1
4
−3

 .

Using the Gram-Schmidt process, or otherwise, find an orthogonal basis for V . [9]

Question 4 Let A be a real n× n matrix and let λ be a real number.

(a) Explain what is meant by saying that λ is an eigenvalue of A. [2]

(b) Let v ∈ Rn. Explain what is meant by saying that v is an eigenvector of A
corresponding to λ. Define the term eigenspace of A corresponding to λ (in Rn). [5]

(c) Find all eigenvalues of the matrix

A =

1 −1 2
0 6 −10
0 3 −5

 . [6]

Further, find a basis for the eigenspace of A corresponding to each eigenvalue. [8]

(d) Find an invertible matrix P and a diagonal matrix D such that P−1AP = D. [4]

End of Paper
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