
HAMILTON’S PRINCIPLE

In our previous derivation of Lagrange’s equations we started from the Newto-

nian vector equations of motion and, via D’Alembert’s Principle, changed coordinates

to generalised coordinates ending up with Lagrange’s equations of motion. There is

another way to express the basic laws of mechanics in a single statement which is

equivalent to Lagrange’s equations; this statement is called Hamilton’s Principle or

sometimes the Principle of Least Action. It differs fundamentally from the differen-

tial equation formulation in that it refers to the entire history of a system’s motion

between two distinct times.

To introduce the idea we first define the action for a system of n degrees of freedom

by

S[q1, q2, . . . , qn] =

∫ t2

t1

L(qi(t), q̇i(t), t) dt ,

where t1 and t2 are respectively an initial and a final time, and L is the Lagrangian

for the system which depends on the n generalised coordinates qi(t), the n generalised

velocities q̇i(t) and possibly the time (if there are explicitly time- dependent external

fields). Because we integrate over a finite time interval we see that S depends on the

entire trajectory of the system in configuration space between t1 and t2. Because S

depends on the entire trajectory rather than just on the values of the coordinates and

velocities at one instant we say that S is a functional of the trajectories qi(t).

Hamilton’s Principle can be stated thus: Amongst all the possible trajectories

qi(t) which take the system from initial configuration qi1 = qi(t1) at time t1 to final

configuration qi2 = qi(t2) at time t2, the physical trajectory is the one which makes the

action an extremum (usually a minimum but could be a saddle point).

Hamilton’s Principle is stated in terms of the action S, which is a scalar quantity

that shares all the invariances of the Lagrangian L, and which is independent of any

particular choice of generalised coordinates. However, we can show that Hamilton’s

Principle implies that the trajectory which minimizes the action is the one that also

satisfies Lagrange’s equations so we see that the two formulations are equivalent. For

simplicity we consider a system with one degree of freedom so that there is only one

generalised coordinate q(t). The system starts at position q1 = q(t1) and finishes at

position q2 = q(t2). We can denote the physical trajectory which joins these initial and

final positions by q(t) which satisfies q(t1) = q1 and q(t2) = q2. To implement Hamilton’s

Principle we now have to consider “all possible” sufficiently smooth trajectories q(t)

different from q(t) that start and end at q1, q2 respectively, and then show that S[q(t)]

has an extremum at q(t). We can express “all possible” other trajectories q(t) in terms

of their deviation ε(t) from the physical trajectory q(t) as

q(t) = q(t) + ε(t) ,

where at the endpoints we must have ε(t1) = ε(t2) = 0 since all paths must start at

q1 and finish at q2. To find a minimum, or an extremum, it is sufficient to consider



”nearby” paths such that ε(t) is small. Thus we can expand the action in powers of

ε. To do this we first Taylor expand the Lagrangian as

L(q, q̇, t) = L(q + ε, q̇ + ε̇, t) = L(q, q̇, t) + ε
∂L

∂q
+ ε̇

∂L

∂q̇
+ . . . ,

which gives for the action

S[q] = S[q + ε] =

∫ t2

t1

L(q + ε, q̇ + ε̇, t) dt =

∫ t2

t1

L(q, q̇, t) dt +

∫ t2

t1

ε
∂L

∂q
dt +

∫ t2

t1

ε̇
∂L

∂q̇
dt + . . . .

We can rearrange this as

S[q + ε] − S[q] =

∫ t2

t1

ε
∂L

∂q
dt +

∫ t2

t1

ε̇
∂L

∂q̇
dt + . . . ,

and then in the second integral perform an interation by parts

∫ t2

t1

ε̇
∂L

∂q̇
dt =

[

ε(t)
∂L

∂q̇

]t2

t1

−

∫ t2

t1

ε
d

dt

(

∂L

∂q̇

)

dt .

Since ε vanishes at the two endpoints t1 and t2, there is no contribution from these

endpoints and we have

δS = S[q + ε] − S[q] =

∫ t2

t1

ε

(

∂L

∂q
−

d

dt

(

∂L

∂q̇

))

dt + . . .

This expression for δS, which is first order in the small quantity ε, is called the

first variation of S. It plays the role for functionals that a first derivative plays for

an ordinary function. In particular, we see that if S is to have a minimum or an

extremum at q(t), this first variation must vanish identically for any choice of ε(t).

That in turn will be possible only if, for all times t between t1 and t2, t1 ≤ t ≤ t2, the

coefficient of ε(t) in the integral above vanishes, namely that

∂L

∂q
−

d

dt

(

∂L

∂q̇

)

= 0 .

However, this is just Lagrange’s equation for q(t), showing that Hamilton’s principle

predicts the same mechanical trajectory that Lagrange’s equations would predict. For

more than one degree of freedom the same argument goes through with appropriate

subscripts added such as εi(t), etc.

HAMILTONIAN MECHANICS

In addition to showing us how Lagrange’s equations can be derived from the action

principle, Hamilton showed us an entirely novel way to reformulate the basic laws of

mechanics so that ideas of geometry and topology can come to the fore in analyzing

mechanical motion. As a by-product he gave us a form of classical mechanics which

can be transformed directly into quantum mechanics.

To understand the changed point of view which takes us to Hamiltonian mechan-

ics, we first recall that in Lagrangian mechanics the positions qi and velocities q̇i are

the fundamental variables and the Lagrangian itself is a function of these variables



and of the time if there are explicitly time dependent fields present, L = L(qi, q̇i, t). If

we make a small change in all these variables then L changes as

dL =
n

∑

i=1

∂L

∂qi

dqi +
n

∑

i=1

∂L

∂q̇i

dq̇i +
∂L

∂t
dt ,

or, using the definition of generalised momentum, pi = ∂L/∂q̇i, and the Lagrange

equations of motion, ∂L/∂qi = ṗi,

dL =
n

∑

i=1

ṗidqi +
n

∑

i=1

pidq̇i +
∂L

∂t
dt .

Recall also that in Lagrangian mechanics the energy E is defined as

E =

n
∑

i=1

piq̇i − L ,

and so we would expect it to depend on positions and velocities as well. However, if

we calculate the change in E, analogous to the change in L above, we get something

unexpected,

dE =

n
∑

i=1

pidq̇i +

n
∑

i=1

q̇idpi − dL =

n
∑

i=1

pidq̇i +

n
∑

i=1

q̇idpi −

n
∑

i=1

ṗidqi −

n
∑

i=1

pidq̇i −
∂L

∂t
dt ,

dE = −

n
∑

i=1

ṗidqi +

n
∑

i=1

q̇idpi −
∂L

∂t
dt ,

where two terms have cancelled out. Unlike the expression for dL above which says

that L is in fact a function of the independent variables qi and q̇i, the expression for

dE says that mathematically we should regard E as a function of the independent

variables qi , pi and t.

How can we realize this explicitly? In the Lagrangian point of view, pi = ∂L/∂q̇i =

pi(qi, q̇i, t), so that pi is a secondary quantity which is a function of qi, q̇i t. However,

if we can invert this equation and find q̇i as a function of qi, pi and t, then we can

eliminate all velocities from the energy E in favour of positions qi and momenta pi. If

we have carried out this transformation, we define the resulting energy function as the

Hamiltonian H. In other words E(qi, q̇i, t) → H(qi, pi, t). We then write the infinitesimal

change in the energy as

dH(qi, pi, t) = −

n
∑

i=1

ṗidqi +
n

∑

i=1

q̇idpi −
∂L

∂t
dt .

From this we can read off (analogous to the way that we use the thermodynamic

identity in thermal physics) that

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

,
∂H

∂t
= −

∂L

∂t
.

If there is no explicit dependence on time in L then there will be no explicit dependence

on time in H and we have the 2n first order equations

q̇i =
∂H

∂pi

, ṗi = −
∂H

∂qi

, i = 1, 2, . . . , n .



as the fundamental equations of motion for the system. These are called the Hamilton

equations of motion, or sometimes, the canonical equations of motion. In this point

of view, the energy function H generates the equations of motion and the variables

qi, pi appear on an equal footing rather than the momenta being seen as secondary

quantities as in the Lagrangian picture.

The origin of conservation laws in the Hamiltonian formulation lies in the sym-

metries of the system, just as in the Lagrangian framework. To see this, note that

if the Hamiltonian does not depend on a particular qi (i.e., qi is a cyclic variable),

then from the Hamilton equation ṗi = −∂H/∂qi = 0 we have that the corresponding

momentum is conserved. For the energy itself we calculate

dH(qi, pi, t)

dt
=

n
∑

i=1

dqi

dt

∂H

∂qi

+

n
∑

i=1

dpi

dt

∂H

∂pi

+
∂H

∂t
,

and, using the Hamilton equations of motion to express q̇i and ṗi,

dH(qi, pi, t)

dt
=

n
∑

i=1

[−q̇iṗi + ṗiq̇i] +
∂H

∂t
=

∂H

∂t
.

Thus if there is no explicit time dependence (∂H/∂t = 0) in the Hamiltonian (i.e., we

have time translation symmetry) the energy (which is H) is conserved as well.

PHASE SPACE

In the Lagrangian picture we talked about configuration space, the n-dimensional

space whose coordinates are the generalised coordinates qi for i = 1, 2, . . . , n. In the

Hamiltonian picture, since both the qi and pi appear on an equal footing, we intro-

duce a 2n-dimensional space whose coordinates are the qi and pi. This space we call

phase space. A single point in phase space specifies completely the position and mo-

mentum of every particle in the system, that is, a single point completely specifies

the microscopic state of the system. If we specify such a point at time t = 0, we can

use the associated qi(0) and pi(0) as initial conditions for Hamilton’s equations and if

we solve these equations we find qi(t) and pi(t) for all later (and earlier!) times. As

a function of time the phase point traces out a phase trajectory which describes the

entire history of the system. Since each point in phase space is a possible initial state,

we can say that the phase trajectories fill phase space, but no two trajectories can

ever intersect because the solution to Hamilton’s equations is uniquely specified by

the initial conditions. As a result, we can consider that under the Hamiltonian time

evolution, the entire phase space flows like a liquid. Using Hamilton’s equations of

motion we can prove that the volume of any region of phase space is constant under

this evolution (Liouville’s theorem) although the shape of the region may distort in

an unbelievably complicated way.

As an example, consider the simple harmonic oscillator with one degree of free-

dom. The Lagrangian L and the energy E are respectively

L =
1

2
mq̇2

−
1

2
kq2 , E = pq̇ − L =

1

2
mq̇2 +

1

2
kq2 ,



where p = ∂L/∂q̇ = mq̇. To form the Hamiltonian we express q̇ in terms of p, q̇ = p/m

and substitute in E to get

H(q, p) =
p2

2m
+

1

2
kq2

with two Hamilton equations of motion

q̇ =
∂H

∂p
=

p

m
, ṗ = −

∂H

∂q
= −kq .

To find the phase trajectories we can either solve Hamilton’s equations for q(t) and p(t)

and plot the curve parametrically using time as the parameter or we can remember

that, with no explicit time dependence, the Hamiltonian is constant on any phase

trajectory and we can get the equation of the trajectory by solving H(q, p) = constant

for p as a function of q. Either way we find families of ellipses as discussed in the

lecture.

As a second example of how to set up a Hamiltonian description consider the

spherical pendulum discussed in an earlier summary sheet which has two degrees of

freedom. The two convenient generalised coordinates are the spherical polar angles θ

and φ. The Lagrangian was

L = T − V =
m

2

(

a2θ̇2 + a2 sin2 θφ̇2

)

− mga cos θ ,

and the energy E was

E = pθθ̇ + pφφ̇ − L = T + V =
m

2

(

a2θ̇2 + a2 sin2 θφ̇2

)

+ mga cos θ .

The generalised momenta are

pθ =
∂L

∂θ̇
= ma2θ̇ , pφ =

∂L

∂φ̇
= ma2 sin2 θφ̇ .

If we invert these to express the velocities in terms of the momenta,

θ̇ =
pθ

ma2
, φ̇ =

pφ

ma2 sin2 θ
,

and then eliminate the velocities from the energy E, we get the Hamiltonian

H(θ, φ, pθ, pφ) =
pθ

2

2ma2
+

pφ
2

2ma2 sin2 θ
+ mga cos θ .

We observe that φ is a cyclic variable so from the Hamilton equations we have that pφ

is conserved. The Hamiltonian then effectively reduces to a function of θ and pθ only

and we could draw phase trajectories in the reduced two dimensional phase space

with coordinates θ, pθ.


