
States of matter, structure

Most familiar
• Gas
• Liquid
• Solid
• Plasma
And since it is CM1 course none others will
be considered and we will also omit plasma



We have been looking mostly at solids relating macroscopic and microscopic 
properties. Macroscopically, a gas has no fixed volume or shape.  It has to be 
confined by walls to define its volume and shape and the molecules then bounce 
off the walls providing a force on the walls which we can measure in the form of 
pressure. In fact, a gas has only a very small number of macroscopic properties 
which we can simply list as P, V, T, the total number of molecules N or 
equivalently the total number of moles n. At the molecular level a given gas 
molecule has mass m, position r(x,y,z) and velocity v or equivalently momentum
p = m*v.  We will be trying to answer our usual Q: how can we relate M and µ
properties. Now that we listed the properties this should be real easy!

Perfect Gases – kinetic theory

1= COMPRESSIBILITY
κ



Gas in Equilibrium – macroscopic bit

1. Boyle (c. 1660): PV=const at T=const

2. Charles (1787), Gay-Lussac (1802): V=V0(1+αT), m, P=const

3. P=P0(1+βT)

4. PV=RT (follows from above, R depends only the quantity of 
gas).

5. Avogadro: R≈8.3 J*K-1*mol-1 for given quantity of gas

6. Dalton: P=P1+P2+…+Pn



Gas in Equilibrium – microscopic bit
Lets assume that there is no macroscopic flow of energy or momentum in the 
gas and its macroscopic density is uniform. Lets now see what is happening 
microscopically. Gas molecules would travel in a straight line 
(accord2Newt1stLaw) as there is no interaction between molecules except 
when they collide. The energy of gas will be defined by the kinetic energy of 
this motion (as there is no potential interaction, molecules are too far apart). 

In fact we assume:

•All gas molecules are identical and of mass m

•Of zero size and do not collide with one another

•Exert no forces on one another

•Move randomly and collide with the walls of the container elastically



Gas in Equilibrium – microscopic bit
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Now, we shall consider average energy of this ensemble (as it is something 
we eventually may be able to connect to macroscopic properties).
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Lets look at the collision of molecules with the container walls

Now, p has direction, so need to split v into components. Moreover, lets split large 
container (with n molecules per m3) into small cubes side l and chose components vl1 ⊥
vl2 ⊥ vl3 || to the the sides of the cube (v2= v2
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Gas in Equilibrium – microscopic bit

for single collision and will have to wait 2l/vl1 until next one 
on the same wall (vl1/2l coll per sec)
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Remember, P=F/A, so we work towards P microscopically, F= dp/dt , and 
momentum transfer per molecule per sec (or force per molecule) is:

or 4all molecules in our cute cube ∑ 2
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we have Nl = nll3 molecules in our little volume, hence average speed is
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Hence, microscopic pressure is simply 2
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Now we need to bring it all up2macroscopic world



Gas in Equilibrium – microscopic2macroscopic bit

As there is no preferred direction22
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and thus PV=2/3E, we already defined 

2

3
1

lll vmnP =μ

RTvmNPV

vmNPVvmnP

vn
n

v
nV

v
N

v

A

l
ll

i
i

i
i

==

=⇒=

⇒⇒⇒= ∑∑∑

2

22

2222

3
1

3
1

3
1

111

for 1 mole, also definition of T



Gas in Equilibrium – microscopic2macroscopic bit
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Gas in Equilibrium – macroscopic bit

1. PV=2/3E hence, PV=const at T=const (Boyle)

2. Charles (1787) Gay-Lussac (1802): V=V0(1+αT), m, P=const

3. P=P0(1+βT)

4. PV=RT (follows from above, R depends only the quantity of 
gas).

5. Avogadro: R≈8.3 J*K-1*mol-1 for given quantity of gas

6. Dalton: P=P1+P2+…+Pn



The Van der Waals eq. of state

The equation of state we considered above  describes any sufficiently dilute 
gas in which the molecules on average are further apart than the range of the 
interatomic potentials. However, if the gas is compressed so that the 
molecules are much closer together and are able to interact with each other 
continuously then the equation of state changes to reflect this. A gas in which 
the interatomic interactions are as important as the kinetic energy we will call 
a real gas as opposed to the ideal gas mentioned above.  The problem with 
real gases I that the equation of state will now be different for each different 
interatomic potential!  What people have done is to look for approximate 
equations of state to represent these real gases in which only a few additional 
parameters  are introduced which can be used to fit the equation of state to 
measurements on specific gases. One very interesting attempt to do this is due 
to J. D. Van der Waals a Dutch physicist of the late 19th century who 
proposed an equation of state which is more complicated than the one we 
considered but which is surprisingly useful. 



The Van der Waals eq. of state cntd.
It can be  fitted to the noble gases like Neon, Argon and Krypton with good 
accuracy and  it moreover takes account of two very general features of 
interatomic potentials, namely that there is (1) a strongly repulsive core at 
short  interparticle distances and (2) a weakly attractive tail to the potentials 
at  greater distances but which rapidly goes to zero as in the Lennard-Jones  
potential for example.  As an added bonus the Van der Waals equation of 
state  gives some insight into how a dense real gas turns into a liquid.
Let me simply state the form of the Van der Waals equation of state and later 
justify this form.  It is again a relation between P, V and T but it has the form 
(for n moles of material)
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Where a and b are two constants that depend only on the type of gas we 
are dealing with. Looking at the same Eq. we can also see, that there 
seems to be T>0 at which P=0, meaning our molecules no longer exert 
any pressure on the walls of the container! Physically, this means that 
molecules are now bound together. Thus term n2a/V2 is associated with 
weak attraction force, which in fact will reduce the momentum transfer to 
the wall as molecules hit one as compared to the ideal gas. 



NB

1. Typical kinetic energy of a gas molecule at room T is ~0.04eV<<5eV of 
electron energies in molecules. Hence collisions can be considered as 
elastic!

2. Any kinetic theory (e.g. of ether) that relates pressure to the kinetic energy 
is bound to give PV≈2/3E. This is because P~F/A, and E/V~F*L/V~F/A



Solids

d
θ

d sinθ Crystal planes

2d sinθ=nλ

X-rays of wavelength λ

Calculate d from BRAGG’S LAW (1912)

n=1,2,3,…

For solid crystals we use X-ray diffraction to get information about
crystal plane spacing:  

Order of diffraction

θ

We want microscopic information – need radiation with wavelength 
comparable to the size of feature – atom, interatomic spacing (1-2Å). Hence –
X-rays (Röntgen, 1895).



Liquids

Liquid

Solid
Gas

Treatments

Modified solid Modified gas
Sui generis

No resistance to shear (gas, 
not solid), but not very 
compressible (solid, not gas)!

melting condensation



Modified gas
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and can be very large (103-105 atm.) 
compared to P due to ε of liquid 

Hence, modification of Van der Waals eq. is required! 

Moreover, we have seen earlier that surface tension effectively means that a 
liquid can withstand negative pressure!



It turns out that liquids bare some resemblance to the solid phase. For example, 
the bulk coordination number for a close packed solid is 12 and is only slightly 
reduced to 10 in the liquid phase
Liquids act as a less ordered diffraction planes and so generate only a few 
diffraction lines with X-ray diffraction. Atoms in liquids do not occupy closely 
specified positions as the do in solids: they have more room for manoeuvre and 
are not particular about their neighbours

This is expressed by the RADIAL DISTRIBUTION FUNCTION, P(r), e.g. P(r) for 
liquid Hg

P(r)

r

Proportional to number of neighbours at distance r

1

2

3 Å 5.5 Å
First nearest neighbour distance in solid Second nearest neighbour distance in solid

dr

r



P(r) = Number of atoms in a shell of volume 4πr2dr
4πr2navdr

Here nav= average number of particles per unit volume

This is a NORMALISED definition of P(r)

EXERCISE: Real liquids experience a viscous resistance to flow
The force per m2 to overcome the viscous resistance is by definition:

z
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where η is the viscosity and du/dz is the velocity gradient between two neighbouring 
planes. Fluids that obey this relationship are known as NEWTONIAN fluids. Can 
you develop a simple model that relates viscosity to interatomic forces?

Thus, RDF is a measure of the average density as a function of distance from some 
arbitrary origin. 



Hence, modified solid
Solids expand by 5-15% on melting. Hence, concept of free volume.
Clearly, some extra volume comes from increase of distance between 
molecules or atoms. But this can also be achieved by taking a solid with 8 
or 12 neighbours and subtracting 1 or 2. This will introduce a degree of 
topological disorder, but will still bare relation to the original solid. 
Moreover, x-ray diffraction studies suggest that interatomic distance only 
changes by 1% in Ar on melting, but volume increase suggests that 
distance change must be about 5%.This justifies the view of melting as 
creation of “holes” in the structure which otherwise closely resembles the 
one of solid. This observations led to “hole-theory” of liquids. 



sui generis

1.Randomly packed structure with local symmetry (but lower than in 
solid, e.g. five fold, one can still divide 360 by 5). Essentially gives a 
snapshot (10-15s) of the liquid and thus a static model.

2. Molecular dynamics approach. A dynamic model and hence transport 
properties can be evaluated. Starts off from placing molecules 
(treated as hard spheres that collide elastically)  in a box and lets 
them move with equal speeds in random directions and their 
subsequent  movements are determined by Newton’s laws of motion. 
The total energy is determined by initial velocities and remains
constant determining the temperature of the system. The behaviour 
of the system depends on the velocity and packing of the particles


