
Elastic Properties of Solids

We continue our quest to relate bulk (macroscopic) properties of materials to 
interactomic interactions/potentials (microscopic properties).
Materials show elasticity, i.e. will deform by an amount proportional to the 
applied force but will return to its original form when the force is removed

Elastic Properties of Solids

For the moment let us consider hydrostatic compression only (see next 
slide). If we apply a uniform pressure increment dP to a sample of volume V, 
we will produce a change (reduction) in volume dV

Definition:     BULK MODULUS = κ = 

1/k - COMPRESSIBILITY

dV
dPV−
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How is bulk modulus related to interatomic forces? Clearly, we 
have to measure energy conversion and to relate P and V to the 
energy.

∆E = E(AFTER) – E(BEFORE) = Q + W

Heat absorbed Work done on sample

The point is that at low temperature the energy E is dominated by the 
microscopic potential energy. Let P denote the pressure inside the 
material. To compress the material we have to apply an external 
force |Fext|=P.A, A –surface area over which pressure P is applied.

∆x

Fext

W = (Force).(Displacement) = -P(A ∆x)
= -P. ∆V

∆E = Q - P. ∆V 



Elastic Properties of Solids

There are two different possible experimental situations:
1) ISOTHERMAL = constant temperature (Q≠0),

2) ADIABATIC = thermally isolated (Q=0),
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At low temperature, however, Q will be small compared to ∆E =so 
we can neglect it

∆E ≈ -P. ∆V    ⇒ 
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E = E(r) = ½nNV(r)
Pair potential

1 molecule fills ≈ r3 volume  ⇒ V = volume = N r3
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For small compressions r = a0 (MINIMUM OF PAIR POTENTIAL)
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The quantity can give us information

About the DYNAMICS of a microscopic particle, i.e. it can tell us
how the particles move when slightly displaced from equilibrium

Consider an L-J type
potential. We can 
approximate the potential by a 
simple parabola: 

V(r)

r
a0

-ε

PARABOLIC
APPROXIMATION
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In Mathematics you will soon learn that VApprox is just the first few terms
of a Taylor’s series representation of V(r). If r- a0 is small enough
VApprox is very close to V(r).
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What about the force FApprox ?

Let x= r- a0
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There is a LINEAR RESTORING FORCE! This means that if the
molecule (or atom) is displaced from equilibrium and let go with the 
other molecule fixed it will undergo SIMPLE HARMONIC MOTION,
i.e. of the form mX”=-cX)
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ν =SHM frequency
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Einstein showed that in a real crystal with many molecules (or atoms)
The total restoring force is:
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Force constant

Therefore the frequency associated with SHM is:
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νE=EINSTEIN FREQUENCY

The EINSTEIN FREQUENCY is an approximate expression for
how fast a molecule will vibrate when displaced from equilibrium
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Summary

Next Topic: Liquids


