REVIEW OF VECTOR ALGEBRA
 (Young \& Freedman Chapter 1)

Scalars and vectors

SCALAR: Magnitude only
Examples: Mass, time, temperature, voltage, electric charge
VECTOR: Magnitude and Direction
Examples: Displacement, force, velocity, electric field, magnetic field

Vector notation

It is vital to distinguish vectors from scalars. Various conventions are used to denote vectors:
Boldface letters:
Bars, arrows or squiggles:
Young \& Freedman uses boldface with and arrow: $\overrightarrow{\mathbf{A}}$
Ohanian uses just boldface letters : A

- I will use $\overline{\mathbf{A}}$ (with the letter in boldface in printed notes)
- For the magnitude of a vector (which is a scalar), I will use the letter in plain typeface and without the bar:
e.g.: Magnitude of $\overline{\mathbf{A}}$ is A

Sometimes I will use the convention of putting the letter between vertical bars: \quad e.g.: Magnitude of $\overline{\mathbf{A}}$ is $\mid \overline{\mathbf{A}}$

For unit vectors (of magnitude equal to one) I will use lower case letters with a "hat" on top:
e.g.: a

Recommendation: You should use the same conventions - this is not obligatory - if you prefer you may adopt one of the other conventions as long as you use it correctly and consistently.

Assuming that you follow this recommendation, then
Don't forget: if it is a vector, put a bar on it.
If it is a unit vector, put a "hat" on it.

Simple example of a vector: displacement vector in the $X-Y$ plane

Vectors are drawn as arrowed lines with the arrow giving the direction and the length representing the magnitude

Magnitude of $\overline{\mathbf{D}}=$ length D

Direction of $\overline{\mathbf{D}}$ is specified by the angle θ

Vector equality

Two vectors are equal if and only if they are equal in magnitude and direction
e.g., vectors $\overline{\mathbf{D}}$ and $\overline{\mathbf{D}}_{1}$ in the diagram above are equal even though they are not coincident in space.

Vector addition

If we add two vectors we get another vector.
To add $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$
Put the beginning of one on the end of the other

The vector \mathbf{C} is formed by joining the beginning and end of the combination is the sum

$$
\overline{\mathbf{C}}=\overline{\mathbf{A}}+\overline{\mathbf{B}}
$$

$\overline{\mathbf{C}}$ is also called the RESULTANT of $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$
The PARALLELOGRAM LAW is another way of adding $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

1. Let the start of $\overline{\mathbf{A}}$ coincide with the start of $\overline{\mathbf{B}}$
2. Draw a parallelogram with $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ as sides
3. The resultant, $\overline{\mathbf{C}}$ is the diagonal containing the starts of $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

Note: Clearly, $\quad \overline{\mathbf{A}}+\overline{\mathbf{B}}=\overline{\mathbf{B}}+\overline{\mathbf{A}} \quad$ (vector addition is COMMUTATIVE)
$(\overline{\mathbf{A}}+\overline{\mathbf{B}})+\overline{\mathbf{D}}=\overline{\mathbf{A}}+(\overline{\mathbf{B}}+\overline{\mathbf{D}}) \quad$ (vector addition is ASSOCIATIVE)

Vector multiplication by a real number

$x \overline{\mathbf{A}}$ has
Magnitude $=\quad x A$ (i.e., x times the magnitude of \bar{A})
Direction $=$ the same as that of $\overline{\mathbf{A}}$ if x is positive $=\quad$ opposite to that of $\overline{\mathbf{A}}$ if x is negative

Components of a vector along the coordinate axes

We will consider the 3-dimensional case using as an example the position vector with respect to the origin. The result applies to ANY sort of vector.

Let point P have coordinates $\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}$ in 3-dimensional space

Let $\overline{\mathrm{A}}$ be the displacement vector of point P from the origin.

We describe $\overline{\mathrm{A}}$ in terms of three ORTHOGONAL UNIT VECTORS along the three axes:
\hat{i} has magnitude 1 and points along $+X$
$\hat{\mathbf{j}}$ has magnitude 1 and points along +Y
$\hat{\mathbf{k}}$ has magnitude 1 and points along $+Z$
Clearly

$$
\overline{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+\mathrm{A}_{y} \hat{\mathbf{j}}+\mathrm{A}_{z} \hat{\mathbf{k}}
$$

Note: alternative notion used in some books: $\hat{\mathbf{i}}, \hat{\mathbf{j}}, \hat{\mathbf{k}} \equiv \hat{\mathbf{x}}, \hat{\mathbf{y}}, \hat{\mathbf{z}}$
$\mathrm{A}_{\mathrm{x}}, \mathrm{A}_{\mathrm{y}}, \mathrm{A}_{\mathrm{z}}$ are called the COMPONENTS of the vector $\overline{\mathbf{A}}$

Two-dimensional example:

$$
\begin{aligned}
& A_{x}=A \cos \left(\theta_{x}\right) \\
& A_{y}=A \sin \left(\theta_{x}\right)=A \cos \left(\theta_{y}\right)
\end{aligned}
$$

By PYTHAGORAS'S THEOREM

$$
A=\sqrt{A_{x}{ }^{2}+A_{y}{ }^{2}}
$$

i.e., the magnitude of a vector is equal to the square root of the sum of the squares of its components

In the 3-dimensional case:

$$
\begin{aligned}
& A_{x}=A \cos \left(\theta_{x}\right) \\
& A_{y}=A \cos \left(\theta_{y}\right) \\
& A_{z}=A \cos \left(\theta_{z}\right) \\
& A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}
\end{aligned}
$$

Addition of vectors in terms of their components

Let $\quad \overline{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}$
$\overline{\mathbf{B}}=B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}$

Then, because vector addition is commutative, we have

$$
\overline{\mathbf{A}}+\overline{\mathbf{B}}=\left(\mathrm{A}_{x}+\mathrm{B}_{x}\right) \hat{\mathbf{i}}+\left(\mathrm{A}_{y}+\mathrm{B}_{y}\right) \hat{\mathbf{j}}+\left(\mathrm{A}_{z}+\mathrm{B}_{\mathrm{z}}\right) \hat{\mathbf{k}}
$$

i.e., we simply add the components separately.

The dot product (scalar product)

Definition:
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=\mathrm{AB} \cos \theta$

i.e. $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=($ Magnitude of $\overline{\mathbf{A}})($ Magnitude of projection of $\overline{\mathbf{B}}$ onto $\overline{\mathbf{A}})$

Things to note about the dot product:

1. $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}$ is a SCALAR
2. $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=\overline{\mathbf{B}} \cdot \overline{\mathbf{A}}$
(Commutative)
3. $\overline{\mathbf{A}} \cdot(\overline{\mathbf{B}}+\overline{\mathbf{C}})=\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}+\mathbf{A} \cdot \overline{\mathbf{C}}) \quad$ (Distributive)

= sum of projections of $\overline{\mathbf{B}}$ and $\overline{\mathbf{C}}$.
4. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are perpendicular $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=0$ as $\cos \left(90^{\circ}\right)=0$

5. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are parallel $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=\mathrm{AB}$ as $\cos \left(0^{\circ}\right)=1 \quad \underset{\overline{\mathbf{B}}}{\overrightarrow{\mathbf{A}}}$
6. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are anti-parallel $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=-\mathrm{AB}$ as $\cos \left(180^{\circ}\right)=-1 \underset{\overline{\mathbf{B}}}{\stackrel{\overline{\mathbf{A}}}{\stackrel{ }{\rightleftarrows}}}$
7. $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}}=1$
8. $\hat{\mathbf{i}} \cdot \hat{\mathbf{i}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{k}} \cdot \hat{\mathbf{k}}=1 \quad$ as they are parallel
$\hat{\mathbf{i}} \cdot \hat{\mathbf{j}}=\hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=\hat{\mathbf{j}} \cdot \hat{\mathbf{k}}=0$ as they are orthogonal
9. The dot product of two vectors is the sum of the products of their components:
$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}}=\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right) \cdot\left(B_{x} \hat{\mathbf{i}}+B_{y} \hat{\mathbf{j}}+B_{z} \hat{\mathbf{k}}\right)=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$
Exercise: Prove this using 3, 7 and 8.
10. The component of vector $\overline{\mathbf{A}}$ along one of the coordinate axes is the dot product of the relevant unit vector with $\overline{\mathbf{A}}$, e.g.

$$
\hat{\mathbf{i}} \cdot \overline{\mathrm{A}}=\hat{\mathbf{i}} \cdot\left(A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}+A_{z} \hat{\mathbf{k}}\right)=A_{x} \hat{\mathbf{i}} \cdot \hat{\mathbf{i}}+A_{y} \hat{\mathbf{i}} \cdot \hat{\mathbf{j}}+A_{z} \hat{\mathbf{i}} \cdot \hat{\mathbf{k}}=A_{x}
$$

The Cross Product

$\overline{\mathbf{A}} \times \overline{\mathbf{B}}=\overline{\mathbf{C}}$
Magnitude of $\overline{\mathbf{C}}: \mathbf{C}=A B \sin \theta$
Direction of $\overline{\mathbf{C}}: \quad \overline{\mathbf{C}}$ is perpendicular to the plane formed by $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

Direction is given by the Right Hand Rule:

Step 1: Imagine your right hand pointing along $\overline{\mathbf{A}}$
Step 2: Curl the fingers around from $\overline{\mathbf{A}}$ to $\overline{\mathbf{B}}$
Step 3: The thumb then points in the direction of $\overline{\mathbf{C}}$
As drawn above, $\overline{\mathbf{A}} \times \overline{\mathbf{B}}=\overline{\mathbf{C}} \quad$ (direction $=+Z$)

$$
\overline{\mathbf{B}} \times \overline{\mathbf{A}}=-\overline{\mathbf{C}} \quad \text { (direction }=-\mathrm{Z})
$$

Things to note about the cross product:

1. $\overline{\mathbf{A}} \times \overline{\mathbf{B}}$ is a VECTOR
2. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are perpendicular $|\overline{\mathbf{A}} \times \overline{\mathbf{B}}|=\mathrm{AB}$
 as $\sin \left(90^{\circ}\right)=1$
3. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are parallel or antiparallel $|\overline{\mathbf{A}} \times \overline{\mathbf{B}}|=0$

$$
\xrightarrow[\overline{\mathbf{B}}]{\stackrel{\overline{\mathbf{A}}}{\longrightarrow}}
$$

$$
\text { as } \sin \left(0^{\circ}\right)=\sin \left(180^{\circ}\right)=0
$$

4. The cross product is not commutative:
$\overline{\mathbf{A}} \times \overline{\mathbf{B}}$ is out of the page
$\overline{\mathbf{B}} \times \overline{\mathbf{A}}$ is into the page

$$
\overline{\mathbf{A}} \times \overline{\mathbf{B}}=-(\overline{\mathbf{B}} \times \overline{\mathbf{A}})
$$

5. For the orthogonal unit vectors:

| $\hat{i} \times \hat{i}=0$ |
| :--- | :--- |
| $\hat{i} \times \hat{j}=\hat{k}$ |
| $\hat{i} \times \hat{k}=-\hat{j}$ |\quad| $\hat{j} \times \hat{i}=-\hat{k}$ |
| :--- |
| $\hat{j} \times \hat{j}=0$ |
| $\hat{j} \times \hat{k}=\hat{i}$ |\quad| $\hat{k} \times \hat{i}=\hat{j}$ |
| :--- |
| $\hat{k} \times \hat{j}=-\hat{i}$ |
| $\hat{k} \times \hat{k}=0$ |

6. The cross product is not associative: $\overline{\mathbf{A}} \times(\overline{\mathbf{B}} \times \overline{\mathbf{C}}) \neq(\overline{\mathbf{A}} \times \overline{\mathbf{B}}) \times \overline{\mathbf{C}})$
7. But it is distributive:

$$
\overline{\mathbf{A}} \times(\overline{\mathbf{B}}+\overline{\mathbf{C}})=(\overline{\mathbf{A}} \times \overline{\mathbf{B}})+(\overline{\mathbf{A}} \times \overline{\mathbf{C}})
$$

Scalar and vector fields

The value of a scalar or vector quantity often varies with position in space. A function which describes this variation is said to be the FIELD of the quantity.

Scalar field:

A scalar function $S(x, y, z)$ gives the value of S at every point in space.
Examples: $S=$ Height above sea level (geographical contour map)
S = Atmospheric pressure (isobars on a weather map)

Vector field:

A vector function $\overline{\mathbf{F}}(\mathrm{x}, \mathrm{y}, \mathrm{z})$ gives the magnitude and direction of $\overline{\mathbf{F}}$ at every point in space.

Examples:

1. Wind velocity - indicated by arrows on a weather map
2. The gravitational field of the Earth, $\overline{\mathbf{g}}$:

Magnitude: $g=\frac{G M_{E}}{R_{E}{ }^{2}}$
where $\quad \mathrm{M}_{\mathrm{E}}=$ mass of the Earth; $\mathrm{R}_{\mathrm{E}}=$ Radius of the Earth

Direction: Towards the centre of the Earth
3. The Electric Field, $\overline{\mathbf{E}}$

4. The Magnetic Field, $\overline{\mathbf{B}}$

Gradient of a scalar field

Example: $H=$ Height above sea level Contours $=$ lines of constant height \equiv lines of constant potential energy

Two-dimensional example:

The arrows show the gradient (slope) of the hill, $\overline{\mathrm{S}}$, at various points. $\overline{\mathrm{S}}$ is a vector:

$$
\overline{\mathbf{S}}=\mathrm{dH} / \mathrm{d} \overline{\mathbf{L}}
$$

The gradient has:

Magnitude (steepness)
(the direction in which a ball would roll if released at that point)

This is just one example of a general principle:

The gradient of a scalar field is a vector field

If $\mathrm{Hx}, \mathrm{y}, \mathrm{z}$) is a ANY scalar field, then
$\operatorname{Grad}(H)=\bar{\nabla} H=\frac{\partial H}{\partial x} \hat{\mathbf{i}}+\frac{\partial H}{\partial y} \hat{\mathbf{j}}+\frac{\partial H}{\partial z} \hat{\mathbf{k}}=\left[\frac{\partial}{\partial x} \hat{\mathbf{i}}+\frac{\partial}{\partial y} \hat{\mathbf{j}}+\frac{\partial}{\partial z} \hat{\mathbf{k}}\right] H$
$\operatorname{Grad}(\mathrm{H})$ is also denoted $\bar{\nabla} \mathrm{H}$ (pronounced "del"). $\bar{\nabla}$ operates on a scalar field to produce a vector field.

Example: The Electric field, $\overline{\mathbf{E}}$, is the gradient of the Electric Potential, V.

