REVIEW OF VECTOR ALGEBRA (Young & Freedman Chapter 1)

Scalars and vectors

- SCALAR: Magnitude only Examples: Mass, time, temperature, voltage, electric charge
- VECTOR: Magnitude and Direction Examples: Displacement, force, velocity, electric field, magnetic field

Vector notation

It is vital to distinguish vectors from scalars. Various conventions are used to denote vectors:

- I will use $\overline{\mathbf{A}}$ (with the letter in boldface in printed notes)
- For the magnitude of a vector (which is a scalar), I will use the letter in plain typeface and without the bar:
- e.g.: Magnitude of $\overline{\mathbf{A}}$ is A

Sometimes I will use the convention of putting the letter between vertical

bars: e.g.: Magnitude of \overline{A} is $|\overline{A}|$

For unit vectors (of magnitude equal to one) I will use lower case letters with a "hat" on top:

e.g.: ^

Recommendation: You should use the same conventions - this is not obligatory - if you prefer you may adopt one of the other conventions as long as you use it correctly and consistently.

Assuming that you follow this recommendation, then

Don't forget: if it is a vector, put a bar on it. If it is a unit vector, put a "hat" on it.

Simple example of a vector: displacement vector in the X-Y plane

Vectors are drawn as arrowed lines with the arrow giving the direction and the length representing the magnitude

Magnitude of $\overline{\mathbf{D}}$ = length D

Direction of $\overline{\mathbf{D}}$ is specified by the angle θ

Vector equality

Two vectors are equal if and only if they are equal in magnitude and direction

e.g., vectors $\overline{\mathbf{D}}$ and $\overline{\mathbf{D}}_1$ in the diagram above are equal even though they are not coincident in space.

Vector addition

If we add two vectors we get another vector.

To add $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

Put the beginning of one on the end of the other

The vector $\overline{\mathbf{C}}$ is formed by joining the beginning and end of the combination is the sum

 $\overline{\mathbf{C}}$ is also called the RESULTANT of $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

The PARALLELOGRAM LAW is another way of adding $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$

- 1. Let the start of $\overline{\mathbf{A}}$ coincide with the start of $\overline{\mathbf{B}}$
- 2. Draw a parallelogram with $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ as sides
- 3. The resultant, \overline{C} is the diagonal containing the starts of \overline{A} and \overline{B}

Note: Clearly, $\overline{\mathbf{A}} + \overline{\mathbf{B}} = \overline{\mathbf{B}} + \overline{\mathbf{A}}$ (vector addition is COMMUTATIVE)

 $(\overline{A} + \overline{B}) + \overline{D} = \overline{A} + (\overline{B} + \overline{D})$ (vector addition is ASSOCIATIVE)

Vector multiplication by a real number

x A has

Magnitude = xA (i.e., x times the magnitude of \overline{A})

- Direction = the same as that of $\overline{\mathbf{A}}$ if x is positive
 - = opposite to that of $\overline{\mathbf{A}}$ if x is negative

Components of a vector along the coordinate axes

We will consider the 3-dimensional case using as an example the position vector with respect to the origin. The result applies to ANY sort of vector.

Let point P have coordinates A_x , A_y , A_z in 3-dimensional space

Let \overline{A} be the displacement vector of point P from the origin.

We describe \overline{A} in terms of three ORTHOGONAL UNIT VECTORS along the three axes:

 $\hat{\mathbf{i}}$ has magnitude 1 and points along +X $\hat{\mathbf{j}}$ has magnitude 1 and points along +Y $\hat{\mathbf{k}}$ has magnitude 1 and points along +Z

Clearly $\overline{\mathbf{A}} = A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}$

Note: alternative notion used in some books: \hat{i} , \hat{j} , $\hat{k} \equiv x, y, z$

 $A_x,\,A_y,\,A_z$ are called the COMPONENTS of the vector $\overline{\textbf{A}}$

Two-dimensional example:

 $A_{x} = A\cos(\theta_{x})$ $A_{y} = A\sin(\theta_{x}) = A\cos(\theta_{y})$

By PYTHAGORAS'S THEOREM

$$A = \sqrt{A_x^2 + A_y^2}$$

i.e., the magnitude of a vector is equal to the square root of the sum of the squares of its components

$$A_{x} = A \cos(\theta_{x})$$

$$A_{y} = A \cos(\theta_{y})$$

$$A_{z} = A \cos(\theta_{z})$$

$$A = \sqrt{A_{x}^{2} + A_{y}^{2} + A_{z}^{2}}$$

Addition of vectors in terms of their components

	^	^	^		^	~	~
let	$\mathbf{A} = \mathbf{A} \mathbf{i} + \mathbf{A}$	A i +	AK	$\mathbf{B} = \mathbf{P}$	3 i +	· B i +	B k
-01		ry I	/`Z'`		'X• '	-yj	- z.

Then, because vector addition is commutative, we have

$$\overline{\mathbf{A}} + \overline{\mathbf{B}} = (\mathbf{A}_{x} + \mathbf{B}_{x})\hat{\mathbf{i}} + (\mathbf{A}_{y} + \mathbf{B}_{y})\hat{\mathbf{j}} + (\mathbf{A}_{z} + \mathbf{B}_{z})\hat{\mathbf{k}}$$

i.e., we simply add the components separately.

i.e. $\overline{\mathbf{A}} \cdot \overline{\mathbf{B}} = (\text{Magnitude of } \overline{\mathbf{A}})(\text{Magnitude of projection of } \overline{\mathbf{B}} \text{ onto } \overline{\mathbf{A}})$

Things to note about the dot product:

- 7. $\hat{\mathbf{a}} \cdot \hat{\mathbf{a}} = 1$
- 8. $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{k}} \cdot \hat{\mathbf{k}} = 1$ as they are parallel $\hat{\mathbf{i}} \cdot \hat{\mathbf{j}} = \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \hat{\mathbf{j}} \cdot \hat{\mathbf{k}} = 0$ as they are orthogonal
- 9. The dot product of two vectors is the sum of the products of their components:

$$\overline{\mathbf{A}} \cdot \overline{\mathbf{B}} = (A_x \hat{\mathbf{i}} + A_y \hat{\mathbf{j}} + A_z \hat{\mathbf{k}}) \cdot (B_x \hat{\mathbf{i}} + B_y \hat{\mathbf{j}} + B_z \hat{\mathbf{k}}) = A_x B_x + A_y B_y + A_z B_z$$

Exercise: Prove this using 3, 7 and 8.

10. The component of vector $\overline{\mathbf{A}}$ along one of the coordinate axes is the dot product of the relevant unit vector with $\overline{\mathbf{A}}$, e.g.

$$\hat{\mathbf{i}} \cdot \overline{\mathbf{A}} = \hat{\mathbf{i}} \cdot (\mathbf{A}_{x} \hat{\mathbf{i}} + \mathbf{A}_{y} \hat{\mathbf{j}} + \mathbf{A}_{z} \hat{\mathbf{k}}) = \mathbf{A}_{x} \hat{\mathbf{i}} \cdot \hat{\mathbf{i}} + \mathbf{A}_{y} \hat{\mathbf{i}} \cdot \hat{\mathbf{j}} + \mathbf{A}_{z} \hat{\mathbf{i}} \cdot \hat{\mathbf{k}} = \mathbf{A}_{x}$$

The Cross Product

Things to note about the cross product:

- 1. $\overline{\mathbf{A}} \times \overline{\mathbf{B}}$ is a VECTOR
- 2. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are perpendicular $|\overline{\mathbf{A}} \times \overline{\mathbf{B}}| = AB$ as $\sin(90^\circ) = 1$
- 3. If $\overline{\mathbf{A}}$ and $\overline{\mathbf{B}}$ are parallel or antiparallel $|\overline{\mathbf{A}} \times \overline{\mathbf{B}}| = 0$

 $as sin(0^{\circ}) = sin(180^{\circ}) = 0$

4. The cross product is **not** commutative:

 $\overline{\mathbf{A}} \times \overline{\mathbf{B}}$ is out of the page $\overline{\mathbf{B}} \times \overline{\mathbf{A}}$ is into the page $\overline{\mathbf{A}} \times \overline{\mathbf{B}} = -(\overline{\mathbf{B}} \times \overline{\mathbf{A}})$

5.

 $\hat{i} \times \hat{i} = 0$ $\hat{i} \times \hat{j} = \hat{k}$ $\hat{i} \times \hat{k} = -\hat{j}$ $\hat{j} \times \hat{i} = -\hat{k}$ $\hat{j} \times \hat{j} = 0$ $\hat{j} \times \hat{k} = \hat{i}$ $\hat{k} \times \hat{i} = \hat{j}$ $\hat{k} \times \hat{j} = -\hat{i}$ $\hat{k} \times \hat{k} = 0$

For the orthogonal unit vectors:

Β

 $\geq \overline{\mathsf{A}}$

В

- 6. The cross product is **not associative**: $\overline{\mathbf{A}} \times (\overline{\mathbf{B}} \times \overline{\mathbf{C}}) \neq (\overline{\mathbf{A}} \times \overline{\mathbf{B}}) \times \overline{\mathbf{C}})$
- 7. But it is distributive: $\overline{\mathbf{A}} \times (\overline{\mathbf{B}} + \overline{\mathbf{C}}) = (\overline{\mathbf{A}} \times \overline{\mathbf{B}}) + (\overline{\mathbf{A}} \times \overline{\mathbf{C}})$

Scalar and vector fields

The value of a scalar or vector quantity often varies with position in space. A function which describes this variation is said to be the FIELD of the quantity.

Scalar field:

A scalar function S(x,y,z) gives the value of S at every point in space.

Examples: S = Height above sea level (geographical contour map)

S = Atmospheric pressure (isobars on a weather map)

Vector field:

A vector function $\overline{\mathbf{F}}(x,y,z)$ gives the magnitude and direction of $\overline{\mathbf{F}}$ at every point in space.

Examples:

- 1. Wind velocity indicated by arrows on a weather map
- 2. The gravitational field of the Earth, $\overline{\mathbf{g}}$:

Magnitude: $g = \frac{GM_E}{R_F^2}$

where M_E = mass of the Earth; R_E = Radius of the Earth

Direction: Towards the centre of the Earth

- 3. The Electric Field, $\overline{\mathbf{E}}$
- 4. The Magnetic Field, $\overline{\mathbf{B}}$

The arrows show the gradient (slope) of the hill, \overline{S} , at various points. \overline{S} is a vector:

$$\overline{\mathbf{S}} = \mathrm{dH/d}\,\overline{\mathbf{L}}$$

The gradient has:

Magnitude (steepness) and Direction (the direction in which a ball would roll if released at that point)

This is just one example of a general principle:

The gradient of a scalar field is a vector field

If Hx,y,z) is a ANY scalar field, then

$$Grad(H) = \overline{\nabla}H = \frac{\partial H}{\partial x}\hat{\mathbf{i}} + \frac{\partial H}{\partial y}\hat{\mathbf{j}} + \frac{\partial H}{\partial z}\hat{\mathbf{k}} = \left[\frac{\partial}{\partial x}\hat{\mathbf{i}} + \frac{\partial}{\partial y}\hat{\mathbf{j}} + \frac{\partial}{\partial z}\hat{\mathbf{k}}\right]H$$

Grad(H) is also denoted $\overline{\nabla}H$ (pronounced "del"). $\overline{\nabla}$ operates on a scalar field to produce a vector field.

Example: The Electric field, $\overline{\mathbf{E}}$, is the gradient of the Electric Potential, V.