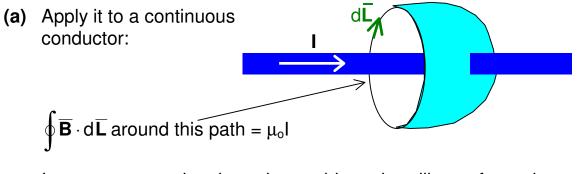
MAXWELL'S EQUATIONS

Maxwell's four equations

In the 1870's, James Clerk Maxwell showed that four equations constitute a complete description of the electric and magnetic fields, or **THE ELECTROMAGNETIC FIELD**

- Gauss's Law for **E**
- Gauss's Law for $\overline{\mathbf{B}} \succeq We've$ met these three already
- Faraday's Law
- Maxwell's modified version of Ampere's Law

Why does Ampere's law need to be modified?



- I = current passing through an arbitrary bag-like surface whose edge is the path.
- $\overline{\mathbf{B}}$ = magnetic field created by the moving charges in the wire
- (b) Apply it to a capacitor being charged: Let the bag-like surface pass **BETWEEN** the plates $\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \mu_0 I_{enc} = 0 \quad \Rightarrow \quad \overline{\mathbf{B}} \text{ must be zero.}$

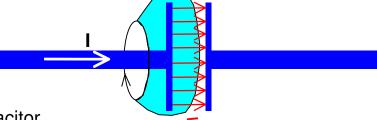
So, Ampere's Law $\Rightarrow \overline{\mathbf{B}} = 0$.

But clearly $\vec{B} \neq 0$ because charges are in motion.

Maxwell's modification

The surface does not intercept any current, but it DOES intercept ELECTRIC FLUX

How much flux is intercepted ?



Let Q = charge on capacitor

$$\Phi \ = \ \frac{\mathsf{Q}}{\epsilon_{\mathsf{o}}} \ \Rightarrow \ \ \frac{\mathsf{d}\Phi}{\mathsf{d}t} \ = \ \frac{\mathsf{I}}{\epsilon_{\mathsf{o}}} \ \Rightarrow \ \ \mathsf{I} \ = \ \epsilon_{\mathsf{o}} \ \frac{\mathsf{d}\Phi}{\mathsf{d}t}$$

 \Rightarrow If we want $\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \mu_0 \mathbf{I}$ as for a straight wire, we must claim that

$$\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \mu_0 \mathbf{I} + \mu_0 \varepsilon_0 \frac{d\Phi}{dt}$$
Term 1
Term 2

MAXWELL'S 4th EQUATION

Continuous wire : Term 1 = $\mu_0 I$ Term 2 = 0 A OK Capacitor : Term 1 = 0 Term 2 = $\mu_0 \epsilon_0 \frac{d\Phi}{dt} = \mu_0 I$ A OK

Maxwell showed that this is a general relation which holds ALWAYS.

Note: The modified Ampere's Law can be written as

$$\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \mu_o(\mathbf{I} + \mathbf{I}_d) \qquad \mathbf{I}_d = \epsilon_o \frac{d\Phi}{dt} = \text{DISPLACEMENT CURRENT}$$

What does this new version of Ampere's law imply about the relationship between \overline{E} and \overline{B} ?

$$\Phi \equiv (\mathsf{E})(\mathsf{Area}) \implies \mathsf{if} \ \frac{\mathsf{d}\Phi}{\mathsf{d}\mathsf{t}} \neq 0 \quad \mathsf{then} \ \frac{\mathsf{d}\mathsf{E}}{\mathsf{d}\mathsf{t}} \neq 0$$

i.e.,
$$\frac{d\Phi}{dt}$$
 represents a CHANGING ELECTRIC FIELD.

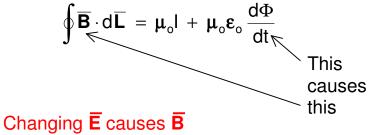
If
$$\frac{d\Phi}{dt} \neq 0$$
 then $\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} \neq 0$ and therefore $\overline{\mathbf{B}} \neq 0$.

i.e., if there is a changing electric field, then the magnetic field cannot be zero

or A CHANGING ELECTRIC FIELD PRODUCES A MAGNETIC FIELD

Recall: Faraday's Law:
$$\oint \overline{E} \cdot d\overline{L} = -\frac{d\Psi}{dt}$$
This causes
Changing \overline{B} causes \overline{E} this

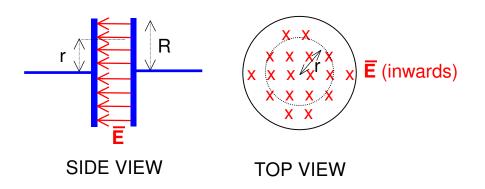
Now, the modified version of Ampere's Law implies that the reverse is also true:



Example: A parallel plate capacitor, radius R, is connected to a source of alternating emf.

Alternating emf \rightarrow alternating electric field $E = E_0 sin(\omega t)$

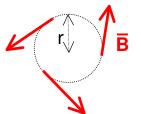
What is the magnetic field (i) Inside the capacitor (r < R) ? (i) Outside the capacitor (r > R) ?



The current flowing across the capacitor, I = 0 (plates are separated by a vacuum or insulator).

(i) r < R: Symmetry \Rightarrow the magnetic field has the same magnitude and direction at all points on the dotted circle of radius r

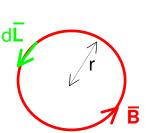
Direction of $\overline{\mathbf{B}}$ will be tangential because the field is associated with current flowing \perp to the plane of the path.



Apply modified Ampere's Law to the circular path:

Integrate $\overline{B} \cdot d\overline{L}$ around the path. d \overline{L} is parallel to \overline{B} everywhere along the path, And B is also the same all around the path.

So
$$\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \int_{0}^{2\pi r} BdL = B \int_{0}^{2\pi r} dL = B(2\pi r)$$



The electric flux through the path is $\Phi = (Field)(Area) = E_0 sin(\omega t)\pi r^2$

$$\mu_{o}I + \mu_{o}\varepsilon_{o}\frac{d\Phi}{dt} = 0 + \mu_{o}\varepsilon_{o}\frac{d(\pi r^{2}E_{o}\sin(\omega t))}{dt}$$

So $2\pi rB = \pi r^2 \mu_0 \varepsilon_0 \omega E_0 \cos(\omega t)$

 $\Rightarrow B(t) = \frac{1}{2} \mu_{o} \varepsilon_{o} r \omega E_{o} \cos(\omega t) \quad \text{or } B(t) = B_{o} \cos(\omega t)$

(i) r > R: The same analysis applies except that

 $\Phi = \pi R^2 E_0 sin(\omega t)$ (no contribution from the area outside R)

Sketch of the amplitude of the magnetic field vs. radius:



Summary of Maxwell's Equations (in integral form)

1	$\oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{A}} = \frac{\mathbf{Q}_{\text{enclosed}}}{\boldsymbol{\epsilon}_{o}}$	Gauss's Law for the Electric Field
2	$\oint \overline{\mathbf{B}} \cdot \mathbf{d} \overline{\mathbf{A}} = 0$	Gauss's Law for the Magnetic Field
3	$\oint \overline{\mathbf{E}} \cdot d\overline{\mathbf{L}} = -\frac{d\Psi}{dt}$	Faraday's Law
4	$\oint \overline{\mathbf{B}} \cdot d\overline{\mathbf{L}} = \mu_o \mathbf{I} + \mu_o \varepsilon_o \frac{d\Phi}{dt}$	Maxwell's modification of Ampere's Law
NB: $3 \Rightarrow$ Changing \overline{B} generates \overline{E} $4 \Rightarrow$ Changing \overline{E} generates \overline{B} Changing $\overline{B} \rightarrow$ changing \overline{E}		

⇒ OSCILLATION OF ENERGY BETWEEN THE ELECTRIC AND MAGNETIC FIELDS

In fact, Maxwell's equations imply the existence of

ELECTROMAGNETIC WAVES