ELECTROMAGNETIC WAVES

Assume: A static pattern of $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ exists with $\overline{\mathbf{E}}$ in the y direction and $\overline{\mathbf{B}}$ in the z direction

- $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ both uniform
- $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ both in the y-z plane
E.g.: this could be due to a sheet of current parallel to the $y-z$ plane, flowing in the y direction.

At some point, P , on the x axis, let $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ have the values indicated.

Let the situation change (e.g., the current changes).
What happens to $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ at point P ?

Apply Maxwell's equations:

Faraday's Law for $\overline{\mathbf{E}}$ Ampere's Law for $\overline{\mathbf{B}}$

Consider two rectangular Loops, one in the $x-y$ plane and one in the x-z plane

To begin with, apply the UNMODIFIED Ampere's Law to Loop 1:

$\oint \overline{\mathbf{B}} \cdot \mathrm{d} \overline{\mathbf{L}}=\mu_{\mathrm{o}} \mathrm{l}_{\mathrm{enc}}=0 \quad$ as current through the path $=0$
$\Rightarrow \quad\left[\mathrm{B}_{\mathrm{z}}(\mathrm{x})\right] \mathrm{dz}-\left[\mathrm{B}_{\mathrm{z}}(\mathrm{x}+\mathrm{dx})\right] \mathrm{dz}=0$

So

$$
\mathrm{B}_{\mathrm{z}}(\mathrm{x}) \mathrm{dz}-\left[\mathrm{B}_{\mathrm{Z}}(\mathrm{x})+\frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{x}} \mathrm{dx}\right] \mathrm{dz}=0 \quad \Rightarrow \quad-\frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{x}} \mathrm{dxdz}=0
$$

$\Rightarrow \frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{x}}=0$
\Rightarrow ACTION AT A DISTANCE : INVALID ACCORDING TO SPECIAL RELATIVITY

SOLUTION: Apply the MODIFIED version of Ampere's Law:
$\Rightarrow \quad-\frac{\partial B_{z}}{\partial x} d x d z=\mu_{o} I+\mu_{0} \varepsilon_{0} \frac{\partial \Phi}{\partial t}=0+\mu_{0} \varepsilon_{0} \frac{\partial\left[E_{\mathrm{y}} \mathrm{dxdz}\right]}{\partial \mathrm{t}}$
[because the electric flux through the loop $=\left(\mathrm{E}_{\mathrm{y}}\right)($ Area $)$]

i.e., Time-varying $\overline{\mathrm{E}} \rightarrow$ position-varying $\overline{\mathrm{B}}$

Now apply FARADAY'S LAW to Loop 2:
$\oint \bar{E} \cdot d \overline{\mathbf{L}}=-\frac{d \Psi}{d t}$

$\Rightarrow \quad\left[E_{y}(x+d x)\right] d y-\left[E_{y}(x)\right] d y=-\frac{\partial\left[B_{z} d x d y\right]}{\partial t}$
[because the magnetic flux through the loop $=\left(\mathrm{B}_{z}\right)($ Area $)$]
$\Rightarrow \quad\left[E_{y}(x)+\frac{\partial E_{y}}{\partial x} d x\right] d y-E_{y}(x) d y=-\frac{\partial\left[B_{z} d x d y\right]}{\partial t}$

$$
\begin{equation*}
\Rightarrow \quad \frac{\partial \mathrm{E}_{\mathrm{y}}}{\partial \mathrm{x}}=-\frac{\partial \mathrm{B}_{\mathrm{z}}}{\partial \mathrm{t}} \tag{2}
\end{equation*}
$$

i.e., \quad Time-varying $\overline{\mathbf{B}} \rightarrow$ position-varying $\overline{\mathrm{E}}$

Differentiate Equation1 with respect to t and Equation 2 with respect to x :

$$
\begin{array}{ll}
\frac{\partial}{\partial t} \frac{\partial B_{z}}{\partial x}=-\mu_{o} \varepsilon_{0} \frac{\partial^{2} E_{y}}{\partial t^{2}} & \frac{\partial}{\partial x} \frac{\partial B_{z}}{\partial t}=-\frac{\partial^{2} E_{y}}{\partial x^{2}} \\
\Rightarrow \quad \frac{\partial^{2} E_{y}}{\partial t^{2}}=\frac{1}{\mu_{0} \varepsilon_{0}} \frac{\partial^{2} E_{y}}{\partial x^{2}} & \begin{array}{c}
\text { THE WAVE EQUATION } \\
\text { (see Y\&F p. 601) }
\end{array}
\end{array}
$$

This describes a TRANSVERSE WAVE (E perpendicular to direction of travel, X)

Now differentiate Equation 1 with respect to x and Equation 2 with respect to t :

$$
\Rightarrow \quad \frac{\partial^{2} \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{t}^{2}}=\frac{1}{\mu_{0} \varepsilon_{0}} \frac{\partial^{2} \mathrm{~B}_{\mathrm{z}}}{\partial \mathrm{x}^{2}}
$$

Speed of propagation

$1 \quad \frac{\partial B_{z}}{\partial x}=-\mu_{0} \varepsilon_{0} \frac{\partial E_{y}}{\partial t} \quad \Rightarrow \quad \frac{\partial x}{\partial t}=-\frac{1}{\mu_{0} \varepsilon_{0}} \frac{\partial B_{z}}{\partial E_{y}}$
$2\left[\frac{\partial \mathrm{x}}{\partial \mathrm{t}}\right]^{2}=-\frac{1}{\mu_{0} \varepsilon_{0}} \quad \Rightarrow \quad \frac{\partial \mathrm{x}}{\partial \mathrm{t}}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}}$

So, the SPEED OF ELECTROMAGNETIC WAVES is
$c=\frac{1}{\sqrt{\mu_{\mathrm{o}} \varepsilon_{\mathrm{o}}}}$
$\mu_{0}=4 \pi \times 10^{-7} \quad \mathrm{H} \mathrm{m}^{-1}$
$\Rightarrow \mathrm{c}=3.0 \times 10^{8} \mathrm{~m} \mathrm{~s}^{-1}$

Solutions to the wave equation

$\frac{\partial^{2} E_{y}}{\partial t^{2}}=c^{2} \frac{\partial^{2} E_{y}}{\partial x^{2}}$

Solution is $E_{y}=E_{0} \cos (\omega t-\beta x)$
$\left.\begin{array}{l}\frac{\partial^{2} E_{y}}{\partial t^{2}}=\omega^{2} E_{0} \cos (\omega t-\beta \mathbf{x}) \\ \frac{\partial^{2} E_{y}}{\partial x^{2}}=\beta^{2} E_{0} \cos (\omega t-\beta \mathbf{x})\end{array}\right\} \quad \omega^{2}=c^{2} \beta^{2} \Rightarrow \beta=\omega / c$
So $E_{y}=E_{0} \cos \left[\omega\left(t-\frac{x}{c}\right)\right]$ and $B_{z}=B_{0} \cos \left[\omega\left(t-\frac{x}{c}\right)\right]$
Period of oscillation: $\quad \mathrm{T}=\frac{2 \pi}{\omega}$

Note:

1. $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ are perpendicular to each other
2. $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ are perpendicular to the direction of travel
3. The wave is self-sustaining:

4. $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ contain energy \Rightarrow the wave transports energy.

Power flow in a plane electromagnetic wave

Recall: The energy densities (energy per unit volume) of the electric and magnetic fields are

$$
\mathrm{u}_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \quad \mathrm{u}_{\mathrm{B}}=\frac{1}{2} \frac{\mathrm{~B}^{2}}{\mu_{0}}
$$

Consider a plane wave propagating in the x-direction, and evaluate the energy contained in a thin slab of area A, thickness $d x$:

The electromagnetic energy in the slab is: $d U=\frac{\mathbf{1}}{\mathbf{2}}\left[\varepsilon_{0} \mathrm{E}^{2}+\frac{\mathrm{B}^{2}}{\mu_{0}}\right] A d x$
So $\quad d U=\frac{\mathbf{1}}{\mathbf{2}}\left[\varepsilon_{0} \mathrm{E}^{2}+\frac{\mathrm{E}^{2}}{\mathrm{c}^{2} \mu_{0}}\right]$ Adx \quad But $\mathrm{c}=\frac{1}{\sqrt{\mu_{0} \varepsilon_{0}}} \Rightarrow \varepsilon_{o}=\frac{1}{\mu_{0} \mathrm{c}^{2}}$

Therefore $d U=\frac{E^{2}}{c^{2} \mu_{0}} A d x$ or $d U=\frac{1}{\mu_{0} c}(E B) A d x$
But $\frac{\partial x}{\partial t}=-\frac{\partial E}{\partial B}=\frac{E}{B}=c \quad \Rightarrow \quad E=c B$

Power crossing area A is $P=d U / d t$:
$P=\frac{1}{\mu_{0}} E B A \quad$ as $\quad c=\frac{d x}{d t} \quad \Rightarrow \quad$ Power per unit area $=\frac{E B}{\mu_{0}}$
Direction of power flow $=$ direction of $\overline{\mathbf{E}} \times \overline{\mathbf{B}}$
Magnitude of power flow $=\frac{E B}{\mu_{0}}$

\Rightarrow Power flow per unit area is given by

$$
\overline{\mathbf{S}}=\frac{1}{\mu_{0}}(\overline{\mathbf{E}} \times \overline{\mathbf{B}})
$$

Which carries more energy, $\overline{\mathrm{E}}$ or $\overline{\mathrm{B}}$?

$$
\mathrm{u}_{\mathrm{E}}=\frac{1}{2} \varepsilon_{0} \mathrm{E}^{2} \quad \mathrm{u}_{\mathrm{B}}=\frac{1}{2} \frac{\mathrm{~B}^{2}}{\mu_{0}} \quad \text { But } \mathrm{E}=\mathrm{cB}
$$

So $E^{2}=\frac{B^{2}}{\mu_{0} \varepsilon_{0}} \quad \Rightarrow \quad u_{E}=\frac{1}{2} \varepsilon_{0} \frac{B^{2}}{\mu_{0} \varepsilon_{0}}=\frac{1}{2} \frac{B^{2}}{\mu_{0}}=u_{B}$

So the two contributions are equal - the wave is a continuing exchange of energy between the electric and magnetic fields.

The fact that, for an electromagnetic wave, $E=c B$, does not imply that E is more "important" than B in electromagnetic radiation. The value of c is only large as a consequence of the definition of the metre in the SI system. The most natural system of units is one in which $c=1$, but that would not be very suitable for everyday applications.

