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ELECTROMAGNETIC WAVES

Assume: A static pattern of E  and B  exists with E  in the y direction
and B  in the z direction

• E  and B  both uniform
• E  and B  both in the y-z plane

E.g.: this could be due to a sheet
of current parallel to the y-z plane,
flowing in the y direction.

At some point, P, on the x axis,
let E  and B  have the values
indicated.

Let the situation change (e.g., the current changes).
What happens to E  and B  at point P?

Apply Maxwell's equations: Faraday’s Law for E
Ampere’s Law for B

Consider two rectangular
Loops, one in the x-y
plane and one in the
x-z plane

To begin with, apply the
UNMODIFIED Ampere’s
Law to Loop 1:
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SOLUTION: Apply the MODIFIED version of Ampere’s Law:

[because the electric flux through the loop  =  (Ey)(Area)]

i.e., Time-varying E    →→   position-varying B

Now apply FARADAY’S LAW to Loop 2:
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i.e., Time-varying B    →→   position-varying E

Differentiate Equation1 with respect to t and Equation 2 with respect to x:

This describes a TRANSVERSE WAVE (E perpendicular to direction of
travel, X)

Now differentiate Equation 1 with respect to x and Equation 2 with
respect to t:

Speed of propagation

So, the SPEED OF ELECTROMAGNETIC WAVES is
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THE WAVE EQUATION
(see Y&F p. 601)
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µo  = 4π x 10-7  H m-1

εo  = 8.85 x 10-12 F m-1

Solutions to the wave equation

Solution is Ey  =  Eocos(ωt  - βx)

So    
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Note:

1. E  and B  are perpendicular to each other

2. E  and B  are perpendicular to the direction of travel

3. The wave is self-sustaining:

Changing E

Faraday’s Law Modified Ampere’s Law

Changing B

4. E  and B  contain energy  ⇒   the wave transports energy.
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Power flow in a plane electromagnetic wave

Recall:  The energy densities (energy per unit volume) of the electric
and magnetic fields are
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Consider a plane wave propagating in the x-direction, and evaluate the
energy contained in a thin slab of area A, thickness dx:
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Power crossing area A is P = dU/dt:
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Direction of power flow = direction of BE ×

⇒ Power flow per unit area is given by

Which carries more energy, E or B?

So the two contributions are equal – the wave is a continuing exchange
of energy between the electric and magnetic fields.

The fact that, for an electromagnetic wave, E = cB, does not imply that E
is more “important” than B in electromagnetic radiation.  The value of c is
only large as a consequence of the definition of the metre in the SI
system.  The most natural system of units is one in which c = 1, but that
would not be very suitable for everyday applications.
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