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THERMODYNAMICS 
& KINETIC PHYSICS 

 

INTRODUCTION. 

It could be reasonably argued that Newton, when he identified his three laws of motion 

invented what is nowadays recognised as physics, at least the classical version. 

Interestingly, whilst he invented the concepts of force and momentum in which his three 

laws are grounded, and indeed the concepts of force and momentum are defined by 

them, Newton and his contemporaries had no use for the concept of energy. Newton’s 

ideas as set out in the Principia described a mechanical universe running according to 

his laws of motion like a clockwork machine, but could the clockwork be running 

down? Newton’s Principia (1684), and his laws ignored dissipation and worked with 

closed systems consisting of few bodies. Thermodynamics, a discipline making its first 

hesitant steps a century later would concern itself with closed and open systems and 

dissipation would be explicitly involved.  

The term energy was first used in its modern sense by Thomas Young (Youngs Slits) in 

1807 although the entity had been recognised earlier by Liebnitz, a contemporary of 

Newton. Leibnitz identified the product of the mass of an object with its velocity 

squared as a quantity with significance to which attention should be paid, a property 

which he termed “vis viva” (living force), something we recognise today as kinetic 

energy. This quantity, he suggested, was conserved and the fact that this was not how 

things were observed to be was due to dissipation in the form of friction, the effect of 

the collision of the macroscopic object under investigation with many smaller particles 

in the air and in other bodies with which the body in question inevitably interacted. The 

vis viva was seen as a rival to the Newtonian notion of momentum, even though the 

latter was a vector quantity whilst the former a scalar. Eventually the two systems were 

seen as complementary and of equal importance and brought together within a single 

framework. The study of the energy of systems took on ever greater importance with the 

differentiation between the many different forms that energy took on, kinetic, potential, 

mechanical, chemical, electrostatic. An important observation was that the evolution of 

heat (caloric or phlogiston) always appeared to accompany the transformation of one 

kind of energy into another. This mysterious substance was believed to flow from hot to 

cold bodies eventually equalising their temperatures. Lack of evidence for phlogiston 
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never dampened the appeal of this idea for many decades until well into the nineteenth 

century.  

With the invention of engines and their transformation of heat into mechanical work the 

study of how one kind of energy transformed into another became a “hot” topic. and the 

arrival of the industrial revolution meant that money was to be made, empires to be built 

and sustained and the prizes were to be taken by those who understood the limits placed 

on engines and how to push those limits! The subject of thermodynamics was well and 

truly born. 
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EQUILIBRIUM, TEMPERATURE & the ZEROTH LAW of 

THERMODYNAMICS. 

1.1 Heat and Internal Energy. 

Heat was an elusive quality, difficult to define objectively but easy to recognise 

subjectively. We can all tell with a reasonable degree of accuracy which is the hotter of 

two bodies. For a long time heat was believed to be the substance, caloric, that flowed 

from hot to cold materials when they were in contact. In the 19
th

 century, Irishman, 

Lord Kelvin (William Thomson) was one of the pioneers working on heat and trying to 

understand its properties. He famously calculated the age of the earth based on its 

cooling rate from an initial temperature equal to that of the sun and came up with the 

figure of 100 million years, an estimate he used to pour scorn on Darwinian evolution 

which needed far greater time scales in order to operate. Lord Kelvin had vastly 

underestimated the earth’s age as he had no knowledge of the Earths own internal 

heating effect provided by radioactivity. 

Heat has finally been understood as a form of energy that is present only as a 

transitional energy when two systems, one at a higher temperature than the other are in 

contact. The heat energy is exchanged and flows to the cooler body where it is either 

stored as different forms of internal energy of that system or is used to cause the 

receiving system to perform work. It is not stored as heat by the receiving 

body! We do not refer to any body/system as containing a given quantity of heat. 

Rather the body is at some temperature because it has an internal energy 

due to the sum of the energies of the body’s constituent parts (atoms, molecules etc). In 

summary heat is defined as the energy flowing from a hot to a cooler body by the 

process of conduction, convection or radiation. The internal energy of a body/system 

may be present as; 

 

(i) Kinetic energy of the constituent parts, ie. the energy of translational motion 

of the atoms/molecules, or their vibrational or rotational motions 

(ii) Latent energy held by the body by virtue of its phase, gas, liquid, solid etc. 

this, as we will see, is equivalent to potential energy of interaction among 

constituent parts. This is the origin of the latent heat associated with changes 

of phase within a system. 
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(iii) Chemical energy associated with the bonding of the constituent parts of the 

body. 

(iv) Nuclear energy as the energy held by virtue of the strong nuclear interaction.  

The first and second of these are the thermal energies of the body/system in which we 

shall be chiefly interested. 

To proceed with the course now some definitions are required.  

Since thermodynamics is;  

(i) The study of heat transferred between systems,  

(ii) Work done by those sytems and  

(iii) The effect on physical properties of the system under observation,  

and since the results obtained on a specific system are readily generalised to any other 

system provided the right variables are chosen, we shall spend a lot of time studying the 

simple system of a box full of non-interacting atoms (or molecules). To begin with in 

order to ensure that the interaction between constituent parts is zero or negligible we 

will specify a dilute system in order that the constituent atoms or molecules are well 

seperated. Whether the constituents contained in the box are atoms or molecules, 

will make a difference when we come to look at internal energy in some detail 

because atoms cannot have internal energies of their own such as rotational or 

vibrational energy whereas molecules will generally have internal motions, available 

to take up some energy, often in a profusion of different types. I will from now on refer 

to molecules the term being implicitly understood to cover atoms as well. The system 

will be assumed to contain a large number of molecules, N , of order of Avagadro’s 

number, NA = 6  10
23

 mol
-1

 , in order that we may speak of average values of 

macroscopic observables with confidence. Such observables include volume, V, 

pressure , P, temperature, T, internal energy, U, density,  and various fields (electric, 

E,  magnetic induction, B, polarisation, P, magnetisation, M, and others). These 

variables are related to one another by theories and laws in terms of closed systems of 

equations and coefficients, the latter being experimentally determined and including 

bulk modulus, , Young’s modulus, Y , thermal expansion coefficient, , thermal 

conductivity, , specific heat, C…….In a later course, statistical physics, these 

macroscopic systems, variables and coefficients will be related to microsystems such as 

single molecules and to quantum mechanical eigenvalues and how these values are 

distributed statistically. Here for now we stick with macrosystems but ultimately the 
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macro and the micro must be related. The properties of the macrosystem are known as 

emergent properties of a large number of microsystems and may be discovered in a 

bottom up approach by understanding how a single constituent behaves, adding more 

of these “entities” and trying to understand the gradual emergence of the gross 

behaviour which is not apparent in a collection of a small number of the constituent 

molecules. These emergent properties include such complicated phenomena as self 

organising behaviour, information, life and conciousness. Here we are less ambitious 

taking instead a top down approach that in large part depends on the observed 

empirical behaviour of the systems without an understanding of the underlying 

phenomena. 

 

Internal Energy 

We begin a difficult subject in a simple way by asking how the internal energy, U, of 

this collection of molecules in a box is related to the pressure, and temperature. We are 

going to be interested, to begin with, only in the internal energy of the gas due to the 

translational kinetic energy of the molecules (ignoring vibration and rotation). All we 

need to say to begin with about the molecules of the gas in the container is that they are 

moving. Each will have a different velocity, v , where I have deliberately used the vector 

notation to emphasise the fact that they are moving in random directions as well as at 

random speeds. We need again to specify our gas as a dilute gas such that there are no 

interactions between constituent molecules which are too far apart. This also means that 

one source of potential energy, namely the potential energy of interacting particles is 

negligible and may safely be ignored. It also means that the volume of actual matter is 

negligible compared with the volume in which our system is contained. With all of 

these caveats the internal energy of the gas (remember no vibration or rotation and no 

fields meaning no potential energy provided the atoms are seperated sufficiently that 

there is no mutual interaction) is simply the sum of all the kinetic energies of the N 

molecules. With the n
th

 molecule having a velocity vn the internal energy is then given 

by; 

  2

0 2

1
n

N

n

mvU 


       (1.1) 

We want to relate this internal energy to the pressure, P, of the gas which in a 

macroscopic measurement is 
A

F
P   
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Where F is the force exerted on the wall and A is the area. 

Newton’s laws tell us that the force exerted by a single particle in a collision is 

 

  
dt

pd
F


         (1.2) 

Where (I drop the vector notation) p is the momentum of the particle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The diagram shows a collision with the wall, of a single particle of mass, m, travelling 

with a velocity, v, . We assume all collisions to be elastic and in this elastic collision, 

with the co-ordinate axes as shown, only the x component of the velocity will change 

 

  
yfyi vv     

xfxi vv      (1.3) 

 

The x component of the momentum has changed by an ammount, 

 

  xxxif pmvppp
xx

22        (1.4) 

 

Because of the many frequent collisions of molecules in the gas each will have a 

different velocity and therefore contribute a different momentum change so to find the 
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total momentum change we need to add all of the individual changes in momenta, 

initially just noting in passing that there is a distribution of velocity/momenta. 

 

  x
v

vTot mvNp

x
x

 2       (1.5) 

 

where 
xvN  is the number of molecules with the x component of velocity xv . 

A collision will take place in a time  such that all molecules with a velocity 

component xv  in a volume Avx  make that collision as illustrated  

 

 

 

 

 

 

 

 

This a fraction 
V

Avx 
 of the total volume, V. We can therefore identify a (sub)total 

momentum change due to those molecules with the x component of velocity, xv  , as 

     x

x

vv
p

V

Av
Np

xx
2


      (1.6) 

 

The total change of the x component of the momentum in time  is then given by the 

sum 

  xx
ov

v
x vpA

V

N
p

x

x 2 


      (1.7) 

 

Where we only sum the velocities of molecules travelling towards the wall, hence the 

stricture xv   0 in the limits of the sum. 

 

It is the force exerted on the wall that we are after (to get the pressure) and  

A 
vx 
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I have written 1.8b in this fashion, including the introduction of N in the numerator 

outside the bracket and in the denominator inside the bracket and summing over 

positive and negative values of xv  allowing removal of the 2, as this makes the 

bracket simply the average value of pxvx indicated by angled brackets in 1.9 

 

  xxvp
V

N
AF         (1.9) 

 

Where I have used from statistics the identity yN
N

y
y

y
y





1
 

The pressure is then 

 

  2
xxx mv

V

N
vp

V

N

A

F
P       (1.10) 

 

If the gas is isotropic then 

  xxzzyyxx vpvpvpvpvp 3


   (1.11) 

We now rewrite 1.10 as follows 

 

  2

33
mv

N
vp

N
PV 


     (1.12a) 

 

  
23

2
2mv

NPV        (1.12b) 

Finally we have our relation between P, V and U 

  UPV
3

2
        (1.12c) 
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or 

  PVU
2

3
        (1.12d) 

Where the internal energy, U, of the gas is 

 

     2

2

1
mvNU   
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1.2 Equilibrium and Temperature. 

 

We would like now to consider internal energy in terms of the temperature of the 

system but we as yet have no working definition of temperature and to obtain a 

definition we need first, to discuss equilibrium and what is meant by it. Our system is 

considered to be a closed system, no particles may enter or leave. We may also choose 

the walls of the container to be such that nothing else is exchanged with the surrounding 

environment, principally no energy is exchanged. This last may be dropped depending 

on precisely what we are studying and by the end of the course we will drop the 

restrictions on exchange of particles (matter). The whole, container, system and 

environment we term the universe and this is of course another example of a closed 

system. To get more specific we imagine a fluid (gas or liquid) contained within a 

cylinder with one end permanently closed and the other closed off by a frictionless 

piston. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is an empirical fact that if we leave any “system” isolated for long enough, the one in 

the diagram above or a cup of tea, all of its macroscopic parameters, P, U etc will cease 

Piston 
Gas 

Heat Reservoir 

Spring 

Surroundings 
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to change with time, in addition there are no flows of energy, momentum or particles 

within the system. The system is said to have reached a state of equilibrium. The 

pressure, volume and number of particles will completely and uniquely specify the 

state of the gas (internal energy is set by the other three via 1.12. Any gas of the same 

particles with this volume and pressure will be identical for all observational purposes. 

Given these properties, P , V and N, the other macroscopic properties are automatically 

specified. In other words for a given quantity of gas (usually a mole) it only takes two 

independent macroscopic parameters to specify the equilibrium state of 

the fluid/gas.  

These two variables (in this case P and V) are called State Variables. Which 

are important as they have the following properties; 

 

(i) Change one and the equilibrium state is a new one.  

(ii) Their values define the macroscopic state.  

 

The variables that are specified by P and V, eg, U and T (we shall see later) are called 

Functions of State and U = U(P,V). The precise form of this function of P 

and V is the Equation of State that we met earlier, PVU
2

3
 . 

We could equally have specified U and V in which case U and V would be the state 

variables and for example P = P(U,V) would now be the function of state. 

Before we can get on to temperature we need briefly to consider the interaction of a 

system with its surroundings. Such interactions are several and various and come under 

a few general headings; 

a) Mechanical Interactions. The gas in our example could for example push 

on the piston and move it thus doing work on its surroundings by 

compressing the spring. 

b) Thermal Interactions. Depending on whether the system is isolated or not; 

in the latter case it may change its state without doing mechanical work. If it 

does so then we know that its internal energy will change (it is a state 

variable). It can only do so by interaction and exchange with the 

environment. Walls or boundaries are never perfect but if they do not allow 

the passage of energy to a good approximation they are insulating and are 
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said to be adiabatic or adiathermal walls/boundaries, eg, fibre glass, 

polystyrene, whilst metal walls will readily allow conduction and are called 

diathermal walls. 

 

1.3 The Zeroth Law of Thermodynamics. 

Two systems can be said to be in thermal equilibrium with each other if when placed in 

thermal contact with one another via diathermal (eg metal) walls there is no change in in 

the state variables of either system. 
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The zeroth law of thermodynamics (overlooked the first time around?), is simply stated. 

If system A is in equilibrium with system B and system A is in equilibrium with system 

C then it follows that system B is in equilibrium with system C. A, B and C can each 

consist of different fluids and this remains true. We note here that P0 , P1 and P3 can 

all be different as long as V0 , V1 and V2 are also all different but the zeroth law 

implies that there must be a common property between all three systems. It 

is this property that we shall call temperature, T. 

 

Any systems in THERMAL equilibrium with each other are BY 

DEFINITION at the same temperature 

 

NB. They do not have to be in mechanical equilibrium or chemical 

equilibrium in order to be at the same temperature. 

 

Example 1.  

 

 

 

 

 

If in the above system P1  P2 then the piston would move. The two sides could still be 

in thermal equilibrium but not yet in mechanical equilibrium. 

 

Example 2. 

 

 

 

If there is some disturbance to the above system a chemical reaction would take place 

forming HCl. The temperature could nevertheless be well defined if the system is in 

thermal equilibrium with P and V remaining constant. 

 

 

P1 , V1 P2 , V2 

P , V H2   Cl2 
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Boyle’s Ideal Gas Law 

For a “box” of gas in thermal equilibrium Boyle’s law, empirically arrived at (ie. it is an 

experimental observation that ), states that 

 

   ttanconsPV   

 

If several boxes with different gases but an identical particle number, N, are in thermal 

equilibrium with each other the constant will be the same, thus in our earlier example of 

three containers with pistons in thermal equilibrium, if the gas contained in each had the 

same mass (number of molecules for different gases) then Boyle’s law states 

 

 ttanconsVPVPVP  221100  

 

We have already derived Boyles law from a theoretical study of the kinetic behaviour of 

gases when we obtained the equation of state, PVU
2

3
 , as U is a constant for an 

isolated system in equilibrium. 

This behaviour of an ideal gas can be indicated as a graph joining all the (P,V) pairs that 

are in thermal equilibrium (or equivalently ) at the same temperature and the curve is 

called an isotherm as shown below. 
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1.4 Temperature & Temperature Scales. 

As we noted earlier, we know (most of us) when things are hot or cold, or hotter/colder 

as some subjective sense that we have and can agree on. Temperature was related to this 

subjective sense of hot and cold for a long time before ways and means of giving it an 

objective value that could be universally agreed upon was arrived at. This is not as 

straightforward as would at first appear however the new interest in thermodynamics in 

the eighteenth century made the establishment of agreed temperature scales an absolute 

requirement. Measurements of “temperature were first made by making use of 

properties of materials that were empirically observed to alter as the materials became 

hotter/colder. We can all name a large number of these types of property such as 

thermal expansion which forms the basis of mercury thermometers, or electrical 

resistance. Boyle’s law clearly indicates that if a container of gas was held at constant 

pressure the volume of the gas would change if the temperature (equilibrium state) was 

to alter. 

Such properties are known as thermometric properties and gave rise to  

EMPIRICAL TEMPERATURE SCALES . 

The value of the thermometric property is taken when the thermometer is in equilibrium 

with the system being measured, lets call this system 1 and the thermometer system 2. 

It is thanks to the zeroth law that we can define the concept of temperature for if we 

now take this thermometer, system 2 which is in equilibrium with system 1 and place it 

in thermal contact with a third system then if there is no change in the value of the 

thermometric property the thermometer is in thermal equilibrium with system 3 and 

therefore system 3 is in thermal equilibrium with system 1 and we can define a 

common temperature for system 1 and 3.  
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The process of establishing a temperature is schematically indicated in the above 

diagram. Note that any thermometer is itself a “system” as per our definition and in 

order to read true it must itself come to equilibrium with the system under measurement. 

In this way we now know that if for example we take a block of steel (System1), 

measured to be at 50
0
C by some thermometer (System 2) and drop it in a bowl of water 

(System 3) also measured by (system 2) to be at 50
0
C then there will be no change in 

either as they must be in equilibrium with each other according to the zeroth law. This 

makes the temperature so defined a useful concept. 

There are many such thermometric properties and in order that agreement was achieved 

whether one used the expansion of a column of mercury or the change in resistance of a 

conductor, there was the need for an internationally agreed system. Presently we have a 

system, in place by international agreement since 1954, defined as follows; 

Let X be a general thermometric property. Then using a fixed point that could be 

established readily in any lab and that is relatively impervious to external conditions, we 

call the value of the property at that fixed point XTP. The subscript TP stands for triple 

point, our chosen reproducible fixed point, and is the temperature at which the three 

phases (vapour, liquid, ice) of water can co-exist in equilibrium. Then the unknown 

temperature as measured by X, TX , was defined as 

   









TP
X

X

X
.T 16273       (2.1a) 

eg. for the resistance thermometer, 

   









TP
R

R

R
.T 16273       (2.1b) 

This TR is the temperature, by definition, of a system for which the resistance 

thermometer when in thermal equilibrium has a resistance R. If we measure the 

temperature using an alternative thermometric property, the length of a mercury column 

say 

   









TP
L

L

L
.T 16273  

there is no reason whatsoever why the two numbers TL and TR should 

agree and it is important to understand and appreciate this. So far the temperature 

(number) we have is a human construct. Defining the temperature through 2.1 implies 

the existence of a zero of temperature ie it is of the form, 
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   cXT   

and the thermometric property X becomes zero itself when T = 0.The equation implies 

that there is a linear variation between the value of the thermometric property X and TX. 

ie. this is the case by definition! But this means that the temperature measured using one 

thermometric property will not be the same as that measured by another except at the 

fixed point unless c was the same for both properties.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thermometers using different thermometric properties will agree by 

definition only at one temperature, 273.16, the absolute temperature of the triple 

point of water. Away from this fixed point there is no absolute meaning to the number 

obtained using 2.1 with any particular thermometer. In fact any two thermometers 

based on different thermometric properties will only approximately agree over a 

limited range of temperature and will agree exactly only at the fixed point. 

 

It therefore requires that a choice of standard thermometer is made as well as a 

scale being set. We need to choose one type of thermometer to hold precedence over 

the others. With our understanding of the behaviour of gases, they are relatively simple 

compared to the behaviour of electrons in a resistive material for example, the GAS 

THERMOMETER has assumed great importance in measurement of temperature. It’s 

major benefit over other systems is that the volume (or pressure) of an ideal gas will go 

TTP 

Actual 
behaviour 

Desired 
behaviour 
TR =TGas 

TGas 

TR 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 

 18 

to zero as the temperature is reduced to zero as required by the single fixed point 

definition of T (in fact there are really two fixed points with the other being the 

requirement that at T = 0 the thermometric property, X = 0). 

There are two ways that a gas thermometer may be operated. The pressure of the gas 

may be used as the thermometric property whilst holding the volume constant, thus the 

constant volume gas thermometer where 2.1 becomes 

 

   









TP
Gas

P

P
.T 16273       (2.1c) 

 

Or, the volume may be the thermometric property with the pressure held constant. This 

constant pressure gas thermometer holds practical difficulties and the constant volume 

gas thermometer is used in the establishment of the IDEAL GAS SCALE  

This is known as the gas scale. In fact the definition given above needs to be tightened 

owing to the requirement that the gas used approximates a real gas by being suitably 

dilute, 

 

   









 TPP
Gas

P

P
itlim.T

TP 0
16273  

 

The density of the gas is made as low as possible in order that the gas approximates 

better an ideal gas, the pressure thus drops too but not so low that measurements can’t 

be made. We then find that all gas thermometers give the same temperature 

INDEPENDENT of the gas used!  

 

Prior to 1954 a scale of temperature was used that was set by two fixed points. For the 

Celsius scale the two points chosen were the ice and steam points. The ice point was 

defined as the zero of temperature and there was a decision to have 100 degrees or 

divisions of temperature between the ice and steam points, degrees Celsius. The 

unknown temperature was found from a measurement of the thermometric property , 

Xice and Xsteam , at the two fixed points and the unknown temperature, TX, was found 

from 
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


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This is an equation of the form 

   bXaT          

 

The earlier equation 2.1 had a curious number associated with it, 273.16. We are now in 

a position to understand where this comes from. A choice was made to keep the new gas 

scale or Kelvin system as closely aligned with the old system as possible by defining 

100K as the temperature difference between the ice and steam points as in the Celsius 

scale. The Celsius scale is then related to the gas scale by 

 

   15273. Gas

o
TCT      (2.3) 

The ice point in the centigrade system is defined as 0 
0
C and the triple point as 

used in the gas scale is 0.01 
0
C hence the change from 273.16 to 273.15. The triple 

point on the gas scale is defined as 273.16. 

The two scales are shown in the diagram below. 
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The earlier and scientifically meaningful definition from 2.1 is the absolute temperature 

scale and when it incorporates 100 degrees between ice and steam points it is called the 

Kelvin scale. This means that degrees Celsius and Kelvin are equal and it is the constant 

of the Celsius scale that allows the zero of temperature on that scale to fall at a 

temperature that is easily accessed in everyday situations ie. the temperature of ice, 

something of everyday practicality in spite of global warming!. 

To convert from the centigrade temperature to the gas scale temperature requires care. 

The temperature on the centigrade scale may be defined using a thermometric property 

such as resistance but in order for there to be 100 
0
C between the ice and steam points 

an empirical relation between temperature in centigrade and resistance may need to be 

used. 

We are now ready to use the ideal gas scale to define an empirical 

temperature of more universal significance. We begin by rewriting Boyle’s law 

as follows 

 

   nRTPV   

 

We make this empirical statement recalling that the law refers to a particular 

equilibrium state, in a new equilibrium state the constant changes and it is therefore 

sensible to relate this constant to an empirical temperature, T. Also the ammount of 

material, n, needs to be in the constant as twice the number of molecules requires twice 

the volume if the pressure is to be unchanged etc. R is the gas constant. 

This is of course an equation of state with the state variables being P and V and 

the state function being T. n is the number of moles of gas and is related to N, the 

number of molecules, by  AN
n

N
    Avagadros number.( = 6.02  10

23
 mol

-1
) 

We may also now endow this empirical temperature in Boyle’s law with further 

meaning by using the equation of state already established from kinetic theory of gases, 

2

2

1

2

3
mvNUPV  . 

Boyles law can, using this alternative version of the equation of state of an ideal gas, be 

restated; 

 TNknRTmvNUPV B 2

2

1

3

2

3

2
    (2.4) 
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kB is the Boltzmann constant (= 1.38  10
-23

JK
-1

) relating the kinetic energy of a 

molecule and the temperature and is related to R using Avagadro’s number, 

 

   BAkNR   

Thus R = 8.31JK
-1

. 

 

As noted, equation 2.4 is a further example of an EQUATION of STATE, where the 

expression, 2.4,  describing the state of a fluid has only two independent state variables 

 

   0)T,V,P(f  

 

And we would choose any two of P, V and T as the independent state variables 

depending on the problem we are dealing with. 

We can use 1.12d and 2.4 to find the relationship between temperature and internal 

energy whence 

 

  nRTTNkPVU B
2

3

2

3

2

3
      (2.5) 

 

This shows us that the average translational kinetic energy of a molecule of the gas is 

given by 

 

  
N

U
Tkmv B 

2

3

2

1 2       (2.6) 

 

The kinetic energy will be equipartitioned between its three degrees of freedom (px , py 

and pz ) with TkB2
1  per degree of freedom. If we increase the number of degrees of 

freedom by allowing rotation and vibration, each new degree of freedom will have on 

average an additional TkB2
1 . 

The important thing to note here is that we have shown that the ideal gas temperature is 

directly related to the internal energy, U, of the gas. This temperature we call the 

KINETIC TEMPERATURE. 
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1.5 Heat Transfer and equilibrium. 

Earlier in this exploration we began by analysing the momentum change of a gas 

molecule after collision with the wall of a container to obtain a relation between 

pressure, volume and molecular kinetic energy. We assumed the wall to be hard and 

therefore ignored it, but we can now look a little closer at the molecule-wall collision 

and ask about the transfer of energy BETWEEN the gas and the wall at an atomic level. 

The arguments advanced were those due to Sir James Jeans in his book, Kinetic Theory 

of gases (Cambridge University Press, 1940) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As we saw there was a change in momentum of the gas molecule that contributed to a 

macroscopic pressure. Overall, momentum must be conserved so the change in 

momentum of the gas molecule, mass mg , must be accounted for by a change in 

momentum of the wall molecules, mass Mw , 

With u and U refering to the initial gas molecule velocity and wall velocity respectively 

and v and V refering to the final gas molecule velocity and wall velocity respectively; 

 

 yy vu   yy VU        (3.1) 

Momentum is conserved in the x direction (and y and z) and so 

 

 xwxgxwxg VMvmUMum       (3.2) 

v
 

u 

x 

y 
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We are considering elastic collisions and the gas molecule gains no energy thus using 

xx vu   and xx VU   we obtain; 

 

 )Vv()Uu( xxxx        (3.3) 

 

The wall molecule, mass Mw, gains an amount of energy, Ew as a result of the collision 

 

     xxxxwww UVUVMUVME 
2

1

2

1 22    (3.4) 

 

From 3.2 

  x
w

g
xx

w

g
x u

M

m
Uv

M

m
V       (3.5) 

 

And from 3.3 

  xxxx uUvV        (3.6) 

3.6
w

g

M

m
  

  x
w

g
x

w

g
x

w

g
x

w

g
u

M

m
U

M

m
v

M

m
V

M

m
    (3.6a) 

Combining 3.5 and  

 

  x
w

g
x

w

g
x

w

g
u

M

m
U

M

m
V

M

m
211 





























    (3.7) 

 

Re-arranging 

 

  x
gw

g
x

gw

gw
x u

mM

m
U

mM

mM
V























2
   (3.7a) 
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 xgxw
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           (3.8) 
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
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And the change in energy of the wall molecule after 1 collision is then 

 

 )uU)(umUM(
)mM(

mM
E xxxgxw

gw

gw
w 




2

2
  

 

  xxgwxwxg

gw

gw
w uU)mM(UMUm

)mM(

mM
E 


 22

2

2
   (3.9) 

 

 This is the energy change at the wall due to one molecular collision. We need to 

average over all collisions 
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We have xxxx uUuU   and since the wall molecule is bound by the other wall 

molecules then 0xU  The molecule is a wall molecule its going nowhere!! 

Also by isotropy or equipartition from previous lecture 
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
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Using our relationship between kinetic temperature and internal energy we may rewrite 

3.12 as; 

 

 wgB
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gw
wBgB
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  (3.13) 

 

For the energy of the wall to increase it is required that Tg > Tw  and to flow from the 

wall to the gas, Tw > Tg . This is what we would intuitively expect of course. We have 

shown a molecular level example of THERMAL INTERACTION or heat flow. The 

argument also demonstrates that in thermal equilibrium when there is no 

heat flow the kinetic temperatures of two systems (gas and walls) must 

be equal. 

 

A further example of internal energy of a gas. 

The Photon Gas. 

An unusual case you may think but we can consider a system we refer to as a photon 

gas. This is a system of non interacting particles of light or photons. The only 

interaction we consider to begin with is the interaction with the reflective walls in which 

the gas of N photons is contained. There is no absorption at the wall (for now) only the 

reflection of the photons with the concomitant change in photon momentum and the 

accompanying radiation pressure experienced by the walls. 

A photons momentum, p, and energy, E, are given by; 

 

   k
h

p 


  hE   

 

Using the relation, c , we can re-arrange to find 
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  pcE   and we have  cv 


 

 

Therefore 

 

  Ec
c

E
vp 











 

We already have for an ideal gas the equation of state written in the form 

 

   vp
N

PV



3

 

Now all photons have the same momentum (if the wavelength is the same) and the 

average is no longer necessary. Thus for photons this equation of state, using what we 

have so far derived becomes 

 

    UE
N

PV
3

1

3
  

Where U = NE, the total energy of all of the photons in the photon gas. Recalling that 

for a monatomic material gas we previously found  

UPV
3

2
  

For a given internal energy density U/V a material gas will exert a greater pressure than 

a photon gas. 

Unlike a material gas where the velocities of the particles are non-relativistic, in the 

case of the photon gas we cannot simply relate the internal energy, U, to the temperature 

T . It is left until later to consider how temperature and energy might be related and this 

must be due to interaction with the walls since the photons do not interact with each 

other. 


