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2 PARTIAL DIFFERENTIALS. 

 

As we have already seen, only two variables in a function of state are independent and 

any other variable (the state function) may be expressed in terms of the two independent 

ones (called state variables). 

We have found the equation of state for an ideal gas previously; 
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There is another equation of state frequently used for non-ideal gases, the Van der 

Waals equation 
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These equations of state all take a general mathematical form 

 

 0 nRTPV  

Or 

 0)T,V,P(f  

 

Similarly with the other equation of state 

 

 0
3

2
 UPV  

or 

 0)U,V,P(f  

 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 

 

28 
 

In general when we have a function of state 0)z,y,x(f  and this has consequences 

(i) An Analytic Meaning.  Any one variable can be found as a 

function of the other two which may then be regarded as independent 

Example. 0224  yxz)z,y,x(f  

 

)y,x(zyxz  4 22  

)z,y(xyzx 24   

)z,x(yxzy  24  

 

(ii) A geometric Meaning. The equation of state defines a surface in x, y, z 

space 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An equilibrium state can be thought of as a unique point on such a surface. In 

thermodynamics we are concerned with the changes from one equilibrium state to 

another known as a process. This change proceeds along the surface if there are no 

departures from equilibrium during the process, ie. if the final equilibrium state is 

reached via a series of intermediate equilibrium states the change is said to have been 
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carried out quasi-statically. On the other hand if the change is made rapidly there will be 

excursions into non-equilibrium states. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In the diagram above a “process” is shown where the gas is expanded in going from A 

to B and this is shown on the PVT diagram in a non-isothermal process ie. we can see 

that the temperature changes going from A to B, it is reduced. 
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With two independent variables where we need to describe changes we need to use 

partial differentation as is clear by study of the above diagrams. 

 

Going from one position on the surface to an infinitesimally close position (equilibrium 

state) we need to find how the dependent variable changes as we change first one of the 

independent variables and then the other whilst the partner remains fixed. Ie. if z is the 

dependent variable and z = z(x,y) , we need to know how z changes with x while y is 

held fixed, 
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We could also have used y as the dependent variable, y = y(x,z) 
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Or we could use x as the dependent variable, x = x(y,z) 
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In all three equations 1.1 dx, dy and dz are identical which implies that there are 

relationships amongst the partial differentials which can be discovered. 

 

The first of these are the reciprocal relations found as follows; 
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And from 1.1c  dz
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From equations 1.2  
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Similarly we make dx = 0 to find  
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and for dz = 0 we have  
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Equations 1.3 are called THE RECIPROCAL RELATIONS. 

 

We may now find the second of these relationships, the cyclical relations, as 

follows; 

 

We may substitute 1.1c into 1.1a to find 

 

dy
y

z
dz

z

x
dy

y

x

x

z
dz

yzy
































































    (1.4) 

By expanding and then using the reciprocal relations 1.4 becomes 
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And finally 
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Equation 1.6 is called the CYCLICAL RELATION 

An easy way to remember this equation is to take the following row of variables 
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We frequently use partial differentials to define important properties of a 

thermodynamic system. 

Example Ideal gas equation of state. 

  RTPV   

The three variables are P,V,T and we form the cyclic relation in the way shown above 
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Example. Coefficient of thermal expansion is defined for a fluid as 
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Or more precisely in terms of partial differentials 
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Here P , V and T are the variables and as V depends on T because of the partial 

differential T and P are the two independent variables or state variables and V the state 

function. 

 

Example. (Isothermal) Bulk Modulus is defined for a fluid as 
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NB the negative sign in the definition of  ensures that  has a positive value. 

 

Again we need to write this using partial differentials noting that we need the isothermal 

form ie. temperature is held constant. 
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Looking at 1.8 we note that P depends on V and is therefore a dependent variable 

leaving V and T as the two independent variables or state variables and P is the state 

function. 

We can see by combining 1.7 and 1.8 
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Where the cyclical and reciprocal relations were used in steps 2 and 3 of 1.9 to remove 

the minus sign and then to obtain a more direct final result. 


