
Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 35 

3 THE FIRST LAW OF THERMODYNAMICS. 

 

3.1 Work 

One of the most important ideas in thermodynamics is the concept of work, of a 

system’s capability to perform mechanical work in a system transition between 

equilibrium states. Continuing with our use of the fluid/gas system as the paradigm to 

stand for general systems we can explore the concept of work with the aid, once again, 

of the piston now acting as a moving wall with which the contained gas particles may 

exchange energy, something we have already looked at. 

Consider the piston system sketched below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The force acting on the piston due to the pressure P of the gas is 

 

  F = PA 

 

And this acts to the right and an equal but opposite external force –F acting to the left 

will maintain the position of the piston. If the position of the piston changes under this 

force from x + dx to x, thus changing the volume of the gas  from  

 

 AdxxV   to xAdVV   with AdxVVdV if   

 

The infinitesimal work done on the gas by an external force is  

 

F 

dx 

x 

A 
P, V 
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  PdVPAdxFdxdW        (3.1) 

 

The infinitesimal work done on a fluid during an infinitesimal change of volume, dV is 

then; 

 

đW = -PdV        (3.2) 

 

Note that because in this case (compression) dV is negative the value of –PdV is itself 

positive. This is an example of a very important sign convention; 

 

  Work done on a system is positive 

 

To compress the gas work was done on it by the surroundings. 

It is important to note that in defining the work in this way we must ensure that the 

pressure remains well defined at all times and this requires that the process must be 

performed quasi statically, that is, it must proceed such that at any instant the system is 

in an equilibrium state. This further, means that at any instant we could reverse the 

change and return the system to its original state (along with the surroundings in as 

much as they are affected by the system). This is called a reversible process.  

To  be reversible we cannot have any loss or dissipation in the system and therefore the 

piston must be frictionless. 

In 3.2 where an infinitesimal amount of work, đW has been performed (in this case on 

the system) the bar through the đ indicates the fact that the amount of work for a given 

volume change depends on the path chosen ie how we made the change dV. The change 

from VA to VB can be made in an infinity of ways and any one of them can be performed 

quasistatically and reversibly but requiring different amounts of work to be performed. 

 

NB The basic difference between đW and dV is simply stated as; 

 

dV represents a change of state from one equilibrium state to another and its value 

is path independent. 

whereas 

đW represents a process and its value is path dependent 
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dV is said to be a perfect differential whereas đW is an imperfect 

differential. 

A perfect differential therefore represents a change in a function of state (U, T, V, P…) 

while an imperfect differential represents how that change was carried out (a process or 

flow). 

If we make a large change in the volume we need to find the net effect through 

integration and we have to take care in evaluating any integral in accounting for how the 

large changes were made, ie. the path followed. The volume change in going from A to 

B is easily evaluated 


B

A

V

V
AB dVVVV  

The work performed has to be more carefully evaluated because in the integral 

    
B

A

V

V

PdVW       (3.3) 

There is no “initial work” WA or “final work” WB the concept is meaningless as we are 

talking about a process. There will be an amount of work done represented by the 

integral but we need caution here as depending on the path chosen to get from A to B 

the value of P inside the integral will change in different ways and needs to be included 

as part of the integral. 
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The PV diagram shown above, includes the start and end point of a process taking an 

ideal gas from equilibrium point A (PA , VA) to the equilibrium point B (PA/2, 2VA). 

There are three processes (pathways) indicated and we examine each in turn to find the 

work done in going from A to B. 

 

Example 1. 

C1 shows the direct route from A to B (on the diagram anyway). To find the work we 

need to know how P can be written in terms of V in order to evaluate the integral of 

PdV. In general the equation of the straight line joining (x1 , y1 ) to (x2, y2) may be 

written as  

 

y = y1 + [(y2 - y1) / (x2 - x1)]·(x - x1) 

 

Using this the equation of the line C1 is 
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Therefore we can write the integral  
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           (3.5) 

We know VB = 2VA and can tidy up to obtain 

 

 nRTVPW AA
4

3

4

3
        (3.6) 

 

Example 2 
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C2 shows the isotherm. We know the equation of state for the ideal gas and as the 

temperature is constant along C2,  
V

nRT
P   

The integral is then 

   



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
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B
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 (3.7) 

 

  2lnnRTW         (3.8) 

 

Example 3 

The path C3 is in fact an isochore (V = VA = constant) followed by an isobar (P = PA/2 = 

constant). We break this into two integrals and 

 

  
B

A

A

A

V

V

A
V

V

dV
P

PdVW
2

        (3.9) 

 

The first integral is zero as V = 0 and the second is easily evaluated 

 

  
2

nRT

2

VP
VV

2

P
W AA

AB
A       (3.10) 

 

In summary  

 

C1   nRT.W 51  

 

C2   nRT.lnnRTW 6902   

 

C3   nRT.W 50  

 

Going from A to B necessitated the system doing work on the surroundings (all 

processes have negative values for the work). This was of necessity the case as the gas 

expanded! 
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The work expended by the system was different for each path. Being the least for C3 

and the greatest for C1. 

Another view of the work can be seen from our use of the integral  
B

A

V

V

PdV and the PV 

diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

The integral  
B

A

V

V

PdV is seen to be the area under the line of the path between the path 

and the P = 0 volume axis and looking at the above pressure volume indicator graph we 

can easily see the results obtained earlier for C1 and C3 by geometric area evaluation. 

This is not so easily done for path C2 the isotherm. To get the sign correct we must take 

note of the direction in which the path is traversed. If going from left to right the sign 

convention, positive for work done on a system, the area is taken as negative. 

Proceeding from right to left or high to low volumes the area is positive as the gas is 

compressed and work is therefore done on the system. 

 

Many times in this course we will be interested in cyclic processes that may be 

represented on the PV diagram and the work carried out by or done on the system can 
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be calculated over a cycle where the system at an equilibrium state A is caused to pass 

through a series of points (not all equilibrium points ) before returning to A. 

 

Example 4. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An ideal gas is compressed isothermally from V1 to V1/2 on the path 1 2. It is then 

expanded isobarically at 2P1 back to its original volume on path 2  3 before finally 

being returned isochorically to its original equilibrium state on the path 3  1 

What is the work done by/on the gas?.  

We need to evaluate and add three integrals, one for each path. 

Path 1  2 is an integral we evaluated in an earlier example 
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Path 2  3 is isobaric and P is constant (again this was done earlier) 

 

  nRTVP
V

PVVPW  11
1

221232
2

     (3.12) 

 

1 

2 3 Isobar 

Isotherm 

V 

P 

Is
o
ch

o
re

 

V1/2 V1 

P1 

2P1 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 42 

And path 3  1 is isochoric, V = 0 and therefore no work is done 

 

013 W           (3,13) 

 

The total work done in the closed cycle is therefore 

 

02ln133221   nRTnRTWWWWtot    (3.14) 

 

nRTnRTWtot 31.0)169.0(        (3.14a) 

 

Note the signs of W in each of the arms of the cycle recalling that positive means 

work is done on the gas. The net work is negative meaning that overall in the cycle 

work is carried out by the gas. 

 

If we now reverse the cycle 

 

0W 31             (3.15) 
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          (3.17) 

 

This time the net work is 

 

nRT.nRTWWWWTot 6900122331      (3.18) 

 

  nRTnRTWTot 31.069.01        (3.18a) 

 

and is positive, ie. the system has work done on it by the surroundings. 
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In fact, when the work extracted in one direction is equal to the work done in the other 

direction. The cycle is said to be reversible. 

 

3.2 Internal Energy  

We now want to ask about the internal energy changes during the cycle having looked 

at the work. 

We had previously found that for an ideal monatomic gas (no rotation or vibration) that 

the internal energy was given by the expression PVU
2

3
  

We can ask what are the changes in U as we traverse the cycle, first in the clockwise 

sense from 1  2 3 

 

    0
2

3

2

3
1211221221  nRTnRTVPVPUUU    (3.19) 

 

Because 1 and 2 lie on an isotherm and T1 = T2  

 

For the next stage 

      111221122122332
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2

3
nRTnRTnRTVPVPVPVPUUU   

           (3.20) 

And for the final stage 

 

    1111112113113
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2

3
nRTVPVPVPVPUUU    (3.21) 

 

The net change in internal energy around the cycle is then 

 

0
2

3

2

3
0 11133221   nRTnRTUUU      (3.22) 

In performing this analysis we have learned two important things about the changes in 

internal energy after undergoing processes of a certain type; 
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(i) Around a closed loop there is no change in internal energy. 

This is because there is no net temperature change and therefore the 

molecules cannot be going slower or faster otherwise continuous looping 

would lead to infinite or zero velocities. More succinctly, there is no change 

in U because it is a STATE VARIABLE and its value is representative of 

the particular equilibrium state. Unlike W which is not a state variable and is 

not therefore associated with any particular equilibrium state but rather with 

the process of going from one state to another. 

 

(ii) Also note that equilibrium states on an isotherm all have the same 

internal energy and we have 021 U along the isotherm. 

 

It is obviously true that U is zero if we traverse the loop in the opposite sense (try it) 

for the same reason, U is a state variable. In fact we can be completely general, 

whatever closed loop from A back to A there will be no change in U because it is a state 

variable.  
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The above arbitrary closed cycle shows the general situation 

 

  0
C

dUU  

For W we can find the work done after one cycle by finding the area of the upper and 

lower curve and subtracting the lower curve, work done by the system, (going from left 

to right with volume increasing) from the upper curve, work done on the system, (going 

from right to left with volume decreasing) to obtain the net work done on the system. It 

is the area enclosed by the circuit. 

If we traversed the circuit in the other sense then the upper and lower curves would have 

their signs altered and work done on the system would be minus the area enclosed. 

 

W = +Area Enclosed (counter clockwise) 

 

W = -Area Enclosed (clockwise) 

 

Around a closed cycle 

(i) The work done depends on direction traversed and on the particular 

cycle chosen. It is path dependent and dW is an imperfect differential. 

(ii) The internal energy is unaltered independent of the closed cycle. U is a 

state variable and dU a perfect differential. 
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Adiabatic Work 

In a classic set of experiments it was demonstrated by Joule that if he enclosed a system 

within adiabatic walls (insulating walls allowing no heat transfer into or out of the 

system) then by doing a known amount of work on the system,  

Eg. 

stirring with paddles  or  heating with a known current and resistance 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

that starting from a particular equilibrium state the final end state depended only on the 

work done and not on how we go from the initial to the final state. He showed that the 

temperature rise T  U = W the adiabatic work done on the system. In fact this is 

the empirical definition of the internal energy 

 

  initialfinalAdiabatic UUW       (3.23) 

i 

i 
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3.3 Heat and the First Law 

The case of a thermally/adiabatically isolated system is a special one and the 

observations noted previously have important implications when followed through. 

 

When the system is not adiabatically isolated then it is the case that  

 

  WU           (3.24) 

 

This is of great consequence since at first sight it implies non-conservation of energy! 

By now the conservation of energy had taken its place in the pantheon of physical 

principles as an inviolable requirement and this position could only be reversed at great 

cost to the existing understanding of the universe. It was now an item of faith that the 

amount of energy in the universe was a constant and unchanging, only the form in 

which it was present altered, it’s actual quantity was God given, from the start of the 

universe and could not be added to or subtracted from by any mechanism. In this 

respect it had been a late comer to the group of conserved quantities which included 

momentum and angular momentum (Newton), again fixed quantities which were 

present at the creation and continued unaltered, and mass (Lavoisier). To maintain this 

inviolability of energy conservation in the face of the evidence of careful 

thermodynamic measurements where heat flows were allowed to occur it was 

recognised that in thermodynamic systems the concept of heat flow, Q was essential 

and that Q was just another form of energy. Heat flow like work however was a form 

of energy in transit. No body could be said to hold a quantity of work or heat, the two 

only existed as transient forms while energy changes from one form to another. Thus  

 

The First Law of Thermodynamics  

 

was born, the change in internal energy after some process is carried through is given by 

 

   WQU         (3.25) 
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W is the work done on the system in that process and Q is the heat transferred 

to the system by that process. 

Note that Q like W is not a state variable and should be formally written with the 

strikethrough across the  or d. dQ and dW are both path dependent and imperfect 

differentials unlike dV, dP , dT and dU. 

 

The sign convention must be upheld when using the first law. 

(i) Earlier we had the convention that W was positive when the system has 

work done on it and negative when it is the system that does work. 

(ii) Similarly the convention for heat flow is that Q is positive when it flows 

into the system and negative when it flows from the system. 

 

The first law may also be written in infinitesimal form as 

 

   dWdQdU        (3.26) 

 

In the infinitesimal form the first law holds for all processes reversible and irreversible. 

When the process is reversible we may use our expression(s) for dW to cast the first law 

in the form 

 Fluid  PdVQddU    (Reversible)   (3.27) 

 

The heat flow must be path dependent as the work is path dependent and we need the 

first law to hold for any path. 
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We return to our previous example to look at heat flow around a closed cycle using the 

first law 
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lnnRTWUQ       (3.29) 

This is negative on going from 1  2 and means that heat flows out from the system. 
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nRTVP)VP(VPWUQ      (3.30) 

This is positive and on going from 2  3 heat flows into the gas. 
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3
nRTVPWUQ        (3.31) 

This is negative and therefore on going from 3  1 heat flows out of the gas. 

 

The net heat flow around the cycle is 

 

)ln(nRTnRTnRTlnnRTQQQQnet 21
2

3

2

5
2 111133221     

           (3.32) 
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This is positive and therefore there is net heat flow into the gas if this closed cycle is 

traversed. Previously we found that the net work was 

 

112  )(lnnRTWnet  

 

The net work was done by the gas and is equal to the net flow of heat into the gas. They 

balance one another leaving U = 0 as required after traversing a closed cycle and in 

order to satisfy the first law of thermodynamics. 

 

Before continuing it is worth pausing at this point to note that whilst we have focused 

on the fluid system with two independent variables P and V what has preceded is 

equally applicable to other systems once we have discovered the correct 

independent or state variables to use and the relevant equation of state. Briefly 

some examples of these are; 

 

Example 1. Rubber band (or wire) 

We can consider doing work on a rubber band by pulling on it and causing its extension. 

Two obvious variables are then the tension in, and the length of the rubber band. 

 

 

 

 

 

When the elastic band is extended from its equilibrium length, L0 , by an amount dL, 

there is a tension in the band and a balancing external force F  has to be applied to keep 

the system in equilibrium. This involves work being done on the band (positive work). 

 

dLWd F         (3.33) 

The first law for  the rubber band may be written for reversible process using our 

definition of work (-PdV is replaced by FdL )   

 

 

F 

L 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 51 

First Law of Thermodynamics  

 

dLQddU F     (Reversible)  (3.34) 

 

An Equation of State may be discovered of the form 
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Where L0 is some reference length, the length when the band is not under tension and 

the square bracket in the state equation goes to zero. We may use this equation of state 

to find for example the thermal expansion coefficient,  , at constant tension 
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Using the reciprocal relation,   
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Phrasing the equation of state in terms of T 
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  (3.39) 

Therefore 
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


































































2

2
0

0

2
0

0

2

111

L

L
L
L

L
L

L
L

L
L

L
L

F

F
T

TT
    (3.40) 

This result can also be arrived at through implict differentiation by differentiating both 

sides of the equation of state with respect to T whilst holding F constant; 

 

FF

L

LLL
L

L
LF
































































T

L
aTa

3

2
0

0

2
0

0

21
0

T
  (3.41) 

 

This, we can solve for 
F

L













T
 

 




















































2

2
0

0

2
0

0

2

L

L
L
L

L
L

L
L

L

F
T

T
      (3.42) 
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 A Test for Perfect Differentials 

The differences between perfect and imperfect differentials have been mentioned 

frequently with respect to state variables such as internal energy which are examples of 

the former and work and heat, which are associated with particular processes therefore 

depending on the path taken from initial to final state and are examples of the latter. We 

now establish a test for the perfect differential as follows; 

 

Suppose z = z(x, y) is a function of state which depends on two independent variables, x 

and y. 

Then 

  dy
y

z
dx

x

z
dz

xy

























       (3.43) 

And hence 

 

  dy)y,x(bdx)y,x(adz        (3.44) 

 

Also for dz to be a perfect differential requires by definition that 

  
yx

z

xy

z








 22

        (3.45) 

 

implying 

 

  
x

)y,x(b

y

)y,x(a









       (3.46) 

 

If we are given a differential in the form 

 

  dy)y,x(bdx)y,x(adz        (3.47) 

Such that 

  
x

b

y

a









        (3.48) 
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Then the differential is perfect and can be integrated to give z independent of the path, 

and z is a function of state. 

If    

x

b

y

a









        (3.49) 

Then the differential is imperfect and the integral of dz depends on the path. z is not a 

function of state. 

 

Example. 

An ideal monatomic gas,  PVU
2

3
  

 

(i)  PdVVdPdV
V

U
dP

P

U
dU

PV




























2

3
    (3.50) 

 

   Va
2

3
    Pb

2

3
    (3.51) 

 

    
2

3

2

3











P

b

V

a
     (3.52) 

 

U is a perfect differential. 

 

(ii) PdVdW           (3.53) 

 

First law   PdVVdPPdVPdVVdPWddUQd
2

5

2

3

2

3
  

 

Va
2

3
    Pb

2

5
    (3.54) 

 

2

5

2

3











P

b

V

a
     (3.55) 

dQ is not a perfect differential 
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Applications of the First Law may now be examined. 

 

(i) Heat Capacities 

There are many simple applications of the first law and we begin by using it to define 

heat capacity. 

If an amount of heat Q is introduced to a finite system there will be an increase in 

temperature, T and the heat capacity is defined as 

 

  
dT

Qd

T

Q
itC vv

T

ReRelim 





 0
  (Reversible change)  (3.56) 

 

It is defined when the change in temperature is a reversible one, that is to say at each 

intermediate temperature the new state is an equilibrium state obeying the state 

equation. In this case the input or output of heat will raise or lower the temperature by 

the same amount. 

The specific/molar heat capacity is the heat capacity per unit mass/mole,  

 

m

C

dT

Qd

m
c v  Re1

  
n

C

dT

Qd

n
c v  Re1

   (3.57) 

 

The value of C depends on the type of process in which the heat was transferred. 

 

a) Constant Volume Heat capacity 

 

constV

v

T
V

T

Q
itC


 


 Relim

0
      (3.58) 

 

From the first law 

   QPdVQU    (V = const, dV = 0)  (3.59) 

This allows for a measure of the specific heat capacity for a gas at constant volume that 

involves only state functions; 
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  nR
T

U

T

U
itlimC

VconstVT
V

2

3

0















 




    (3.60) 

 

b) Constant Pressure Heat Capacity 

 

constPT
P

T

Q
itlimC








 0
      (3.61) 

From the first law 

 

   )PV(QPdVQU       (3.62) 

so for the heat 

   )PVU()PV(UQ       (3.63) 

 

A new state function, Enthalpy, H is defined 

 

   PVUH         (3.64) 

 We can find the infinitesimal change in H 

 

   dH = dU + PdV + VdP 

 

And for isobaric processes where dP = 0 we have for the heat change, 

 

   dHPdVdUQd       (3.65) 

 

Therefore a useful definition of the specific heat capacity for a gas at constant pressure 

that involves only state functions is 

 

 
PconstPT

vRe

T
P

T

H

T

H
itlim

T

Q
itlimC 














 







 00

   (3.66) 

 

   nRTPVU
2

3

2

3
       (3.67) 
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  nRTPVPVPVPVUH
2

5

2

5

2

3
     (3.68) 

 

   nR
T

U
C

V
V

2

3













      (3.69) 

 

   nR
T

H
C

P
P

2

5













       (3.70) 

 

And the relationship between CP and CV is then 

 

   nRCC VP        (3.71) 

 

It should be noted that all of the above only applies to a monatomic gas, (no potential, 

rotational or vibrational contributions to U) where  nRTPVU
2

3

2

3
 . 

 

Taking a closer look at ENTHALPY the newly defined state function 

 

  nRTPVPVPVPVUH
2

5

2

5

2

3
     (3.72) 

 

  VdPPdVdUdH        (3.73) 

 

In situations where the pressure is constant, and these situations arise frequently in 

liquids or solutions which are often at atmospheric pressure 

 

dQPdVdUdH        (3.74) 

And the natural variables of the state function, H, in an isobaric situation are U (or 

T ) and V where by natural variables we mean those variables which when held constant 

lead to no further change occurring in that state function ie. for the state function 

enthalpy if U and V are constant, dU = dV = 0 and the enthalpy is constant. A further 
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example is for the internal energy of an ideal gas where PVU
2

3
 and 

 VdPPdVdU 
2

3
.  

Clearly it is V and P that are the natural variables of U as when dV = dP =0 then  

dU = 0. 

 

If there is heat flow during a chemical reaction it is equal to the enthalpy of that reaction 

and the enthalpy is widely used in physical chemistry and is tabulated for common 

reactions. 

In the definition of heat capacity the need for a reversible heat flow process was 

stressed. This is similar to reversible work previously encountered as it means the heat 

flow is induced by infinitesimal temperature differences rather than by finite difference 

in temperature, ie. it occurs quasi statically. 

An example of irreversible heat flow is the dropping of a hot metal (metals conduct heat 

well and therefore the temperature of the metal will be uniform from inside to out and 

remain so) into a bowl of water at room temperature. The metal will rapidly transfer 

heat to the water in an irreversible process passing through non-equilibrium 

intermediate states. There is no way to take the metal back to its original (hot) state by 

infinitesimal changes to the environment. 

An example of reversible heat flow is to place a finite system eg. the bowl of water in 

contact with a heat reservoir at a slightly different temperature (higher or lower). This 

could raise/lower the temperature of the water by dT before iterating with a reservoir at 

a slightly higher/lower temperature than the previous one. In this way the water could 

be taken from one equilibrium state to another at a higher/lower temperature in 

incremental steps, reversibly. 

 

At this point we may define a  HEAT RESERVOIR which is an important concept. 

Recalling, that we stated earlier that it is wrong to think of an object as containing heat, 

where heat like work is the result of a process and is correctly termed heat flow. The 

heat reservoir is a body of such large heat capacity that a flow of heat Q to or from the 

system we are interested in, whilst changing the temperature of that system will have no 
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effect in changing the temperature of the reservoir. Using a series of heat reservoirs at 

different temperatures we can remove or add heat to our system reversibly. 

 

(ii) Adiabatic Process for an Ideal Gas. 

We begin by analysing an ideal gas undergoing a reversible adiabatic change 

(expansion/compression) and starting with the first law, 

 

  PdVQdWdQddU        (3.75) 

 

In an adiabatic process dQ = 0 by definition. 

whence 

  PdVdU          (3.76) 

 

For an ideal monatomic gas we have already established that  PV
2

3
U   

  

And therefore 

  PdVVdPPdVdU 
2

3
     (3.77) 

Re-arranging 

0
2

3

2

5
 VdPPdV        (3.78) 

and 

P

dP

V

dV

2

3

2

5
   

P

dP

V

dV


3

5
    (3.79) 

 

By integration 

 

  constPlnVln 
3

5
      (3.80) 

Rewritten using  )xln(xlnn n
 

  constVlnPln 












 3

5
      (3.81) 
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Combining the logs 

    constnRTVVPVPVPV   113
5

    (3.82) 

We have then demonstrated that at all points on the adiabatic PV curve ( where in this 

case T does vary) are linked through the relationship 

 

   constPVPV  3
5

     (3.83) 

 

and  

 

   constTV 1       (3.84) 

 

that remain true.  NB the constants in the two equations are not the same! 

 

This problem could have been approached in a different fashion; 

 

    )T(UU        (3.85) 

 

Meaning that 

 

  PdVdTCdT
T

U
dU V

V













  (1

st
 Law with dQ = 0)  (3.86) 

 

    dV
V

nRT
dTCV       (3.87) 

 

    
V

dV
nR

T

dT
CV       (3.88) 

 

Integrating and using the relationship nRCC VP   

 

 constVCCconstVnRTC PVV  ln)(lnln    (3.89) 
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  constVln
C

C
Tln

V

P 









 1       (3.90) 

 

  constTVTV V

P
C

C

 


1
1

      (3.91) 

 

With the important exponent  given by  

V

P

C

C
      (3.92) 

 

Diatomic Gases 

All of the foregoing was related to monatomic gases where the relations 

nRTPVU
2

3

2

3
  were found by considering the translational momentum exchange 

of a molecule at a container wall and how this contributed to the pressure. We now wish 

to turn to the case of diatomic gases in order to be able to compare and contrast their 

behaviour with that of the monatomic gases. 

Previously it was shown that for the monatomic gas where there is only translational 

energy to be considered 

  TNkmvmvmvNvmNU Bzyx
2

3

2

1

2

1

2

1

2

1 2222 










 

It is the case that for each degree of freedom available to the atom there was 

TkB
2

1
average thermal energy. With this reminder we may now ask what happens if we 

allow more degrees of freedom or in other words more independent or orthogonal ways 

in which a constituent part of a system may hold energy. 
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 (i) We now suppose that the gas is composed of rigid diatomic molecules where 

by rigid we mean that there is a constant internuclear separation.  

The molecule shown as a dumbbell is now able to rotate about the x, 

y and z axes with kinetic energies 

 

 

 

 

 

 

 

 

 

   2

2

1
xI   2

2

1
yI   2

2

1
zI  (3.93) 

 

respectively. With the molecule aligned along the z axis and the atoms treated as point 

like objects the moment of inertia Iz << Ix = Iy and there are effectively two new degrees 

of freedom added to each molecule. 

For each of these 

TkI Bx
2

1

2

1 2   and TkI By
2

1

2

1 2    (3.94) 

 

The internal energy of a collection of N of these rigid diatomic molecules is  

 

  TNkIImvmvmvNEENU ByxzyxRotTrans
2

5

2

1

2

1

2

1

2

1

2

1 22222 







 

           

           (3.95) 

 

Now we have for CV 

 

x 

y 

z 
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    nR
T

U
C

V
V

2

5













     (3.96) 

 

And for H = U + PV 

 

   nRTPVPVPVPVUH
2

7

2

7

2

5
    (3.97) 

So for CP 

 

    nR
T

H
C

P
P

2

7













      (3.98) 

 

and  

     
5

7


V

P

C

C
      (3.99) 

For an adiabatic process T and V are always related by 

 

   constTVTVTV V

P
C

C

 


15
21

   (3.100) 
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 (ii) If the condition of rigidity were to be relaxed and the diatomic 

molecule was allowed to vibrate 

 

 

 

 

 

 

 

 

 

 

 

 

The vibration occurs along the axis joining the two atoms and this motion has 

potential energy and kinetic energy associated with it, adding a further 

two degrees of freedom and a further TkB  per molecule to the internal energy of the 

gas which is now 

 

     TNkU B
2

7
     (3.101) 

 

And the changes to CV , H and CP that follow this change in internal energy  are now; 

 

     nR
T

U
C

V
V

2

7













   (3.102) 

 

and  

  nRTPVPVPVPVUH
2

9

2

9

2

7
   (3.103) 

 

with 

 

x 

y 

z 
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   ` nR
T

H
C

P
P

2

9













     (3.104) 

 

and  

 

    
7

9


V

P

C

C
      (3.105) 

 

and finally for an adiabatic process on a gas of non rigid diatomic molecules 

 

   constTVTVTV V

P
C

C

 


17
21

 .  (3.106) 
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HEAT CAPACITY OF CLASSICAL IDEAL GASES 

Equation of state PV = nRT 

 

 

Monatomic Gas Rigid Diatomic 

Gas 

Vibrating Diatomic Gas 

nRTU
2

3
  nRTU

2

5
  nRTU

2

7
  

nRCV
2

3
  nRCV

2

3
  nRCV

2

3
  

nRTH
2

5
  nRTH

2

7
  nRTH

2

9
  

nRCP
2

5
  nRCP

2

7
  nRCP

2

9
  

3

5


V

P

C

C
  

5

7


V

P

C

C
  

7

9


V

P

C

C
  

Internal energy due to 3 

translational DoF . 

Internal energy due to 3 

translational DoF plus 2 

rotational DoF. 

Internal energy due to 3 

translational DoF plus 2 Rotational 

DoF plys 2 Vibrational DoF. 

 

For more complex gases there may be even more degrees of freedom and the 

measurement of 
V

P

C

C
 may provide valuable insights into the make up of the gas 

molecules. 

It should be remarked upon here that classically all is fine with the foregoing and we 

have nice relationships between specific heat capacities and the numbers of degrees of 

freedom. However if we examined the behaviour of the heat capacity of an actual 

diatomic gas we would find that the heat capacity would depend on temperature, a fact 

that is not reflected in our classical model. To explain this we turn to quantum 

mechanics where we know that the energies of rotation and vibration are in fact 

quantised; 
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For vibrational states; 

    









2

1
nEVib     (3.107) 

Where  is the frequency of oscillation of the simple harmonic oscillator 

    



       (3.108) 

With  the spring constant (related to bond strength) and 
21

21

mm

mm


  is the reduced 

mass and n the vibrational quantum number or occupancy of the vibrational level. The 

quantised vibration behaves as a boson and therefore it is not restricted by Pauli’s 

exclusion principle and may have multiple occupancy, the quantum equivalent of an 

increased classical amplitude of oscillation. 

For rotational states; 

 

    
I

)J(J
ERot

2

1 2
     (3.109) 

 

where J is the rotational quantum number and I the moment of inertia. 

 

For both of these quantised energies, if the unit of quantisation is larger than TkB
2

1
, the 

process is effectively unavailable to the molecule and the degree of freedom therefore 

unavailable also. This means that as we lower temperature the extra processes are 

“frozen” out and the internal energy is dropped in an almost stepwise fashion causing 

the specific heats to drop “suddenly”. A non rigid diatomic molecule will first lose the 

two degrees of freedom due to vibration as temperature is lowered before losing the two 

rotational degrees of freedom. There is always the zero point vibrational energy 
2

1
, 

but this does not contribute to the heat capacity as it doesn’t contribute to a rise in 

internal energy as heat is introduced into the system. ie. it is always there irrespective. 
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ADIABATIC PROCESSES 

 

Adiabatic processes, we saw, are described by the equation 

 

   constPV    
V

const
P     (3.83) 

 

cf Isothermal processes 

 

   constnRTPV    
V

const
P    (3.110) 

 

For adiabatic changes we find the rate of change of pressure with volume or slope of the 

adiabatic line on a P V diagram 

 

   
V

P

V

PV

V

const

dV

dP 















 11
   (3.111) 

 

Cf Isothermal changes 

 

   
V

P

V

nRT

V

PV

V

const

dV

dP 











222
  (3.112) 
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We note that the magnitude of the local slope in a PV diagram is always greater for 

adiabatic change than for isothermal change, 
2V

nRT

V

P

Adiabatic





 

We now look at actual gases to see how well the foregoing discussion describes them; 

 

Gas CV CP  

Oxygen, O2 0.658 0.981 1.49 

Nitrogen, N2 0.743 1.04 1.40 

Hydrogen, H2 10.2 14.3 1.402 

Carbon Monoxide, CO 0.744 1.04 1.398 

Water, H2O 1.4 1.86 1.33 

Carbon Dioxide, CO2 0.657 0.846 1.287 

Sulphur DioxideSO2 0.47 0.60 1.276 

Ammonia, NH3 1.66 2.15 1.295 

Benzene, C6H6 0.67 0.775 1.157 

 

Table of specific heat capacities for several monatomic, 

diatomic, triatomic and more complex gases. The values 

are taken at high temperature where all the degrees of 

freedom are allowed to play a role, ie. kBT > Equantum 
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Graph showing variation of CP with temperature for a 

variety of monatomic, diatomic and triatomic gases. 
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The Van Der Waals Gas. 

Having looked at other types of “ideal”gas (rigid diatomic and non rigid diatomic) and 

their behaviours we now turn our attention to real gases. The most well known of these 

is the van der Waals gas, where the modified equation of state is what is being referred 

to in the name, the ideal gas equation of state, PV = nRT , being replaced by 

 

     nRTnbV
V

an
P 
















2

2

    (3.113) 

 

The constant a and the alteration to the pressure term in the first part of the LHS are 

found to approximate real gases taking care of the problem of interaction which ideal 

gases avoid by going to the dilute limit. The term 

2










V

n
reflects the effect of increasing 

concentration on the contribution to internal energy made by molecule-molecule 

interactions. In the second term, the volume V is reduced by an amount b per mole in 

order to account for the finite size of the atoms themselves. This has been the most 

successful modification made to the ideal gas equation of state and is widely used. 

 

The internal energy of the Van der Waals gas. 

When T = 0 and kinetic energy is zero. In an ideal gas the pressure would go to zero as 

well as it is the direct result of the exchange of molecular momenta with the walls in 

which the gas is contained. However, the VdW equation of state reduces to 

 

   
2

2

V

an
P     (T = 0)   (3.114) 

 

Where we see that the pressure is finite at zero temperature and is proportional to the 

square of the density of molecules, and this is physically the result of the mutual 

attraction of molecules. If we begin with an extreme dilution which we take as the 

reference energy level and compress this gas we can calculate the work required to 

achieve the compression, 

 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 72 

    


V

/

/V

V

dV
anPdVW

2

2    (3.115) 

integrating, 

    
V

an

V
anW

V

/

2
2 1
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

    (3.116) 

ie. after doing this work at T = 0 the gas has some energy which we take to be the stored 

molecular potential energy at a volume V, not available to ideal gases! This means that 

the total internal energy of a VdW gas has both, kinetic and potential energy 

contributions 

 

    
V

an
nRTUVdW

2

2

3
    (3.117) 

 

This is for monatomic VdW (real) gases with three translational degrees of freedom. 

NB, from the above expression for UVdW and the equation for the heat capacity at 

constant volume 

 

    nR
T

U
)VdW(C

V

VdW
V

2

3













   (3.118) 

 

Is unchanged from that of a real gas. This is of course as it should be as the increase in 

heat flow should only affect the kinetic part of the internal energy and not the potential 

energy part. 

We note in passing that the internal energy is now a function of 2 state variables unlike 

previously; 

    )V,T(UUVdW   

 

    )T(UU Ideal   

 

We can re-cast the internal energy of the VdW gas using the equation of state to obtain 

it in terms of pressure and volume; 
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   (3.119) 

NB we have taken the factor n outside of the second bracket on the RHS. 

Now expand the brackets 
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Simplify 
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and  

 

    )V,P(UUVdW   

 

The adiabatic law for Van der Waals gases. 

We have the equation of state of the Van der Waals gas (3.113); 

 

     nRTnbV
V

an
P 







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
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And it is sensible to ask if we can find an equation describing an adiabatic law, 

equivalent to that which we have already found for an ideal gas, 

constPVPV  3
5

(where 5/3 indicates that it is a monatomic gas that we have in 

mind).  

We have previously obtained the internal energy of the Van der Waals gas, 

V

an
nRTUVdW

2

2

3
 . To find the adiabatic law we use the first law as follows; 

PdVWdQddU  0     (3.122) 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 74 

Finding dU from the equation for UVdW , a rearranged equation of state with pressure as 

the subject 

2

2

V

an

nbV

nRT
P 


     (3.123) 

 

and using it in the first law  
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By integrating the above  
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Re-arranging 
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Therefore re arranging 
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   (3.128) 

And finally 

      constnbVT 2
3

    (3.129) 

 

Is the adiabatic rule for a Van der Waals gas. 
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Joule Free Expansion. 

We now consider another irreversible process to see its consequences for ideal and real 

gases. This is the Joule free expansion illustrated below, 

 

 

 

 

 

 

 

 

 

 

Represented diagrammatically, above is the free expansion where we initially have a 

gas contained in one half of a container by a separating internal wall and with adiabatic 

and rigid external walls. These constraints mean that W = 0 and that Q = 0. 

If we remove/break the internal wall the gas is free to expand into the other half of the 

container.  

Applying the first law to this process is straight forward and  

 

    0 WQU      (3.130) 

 

This means there is no change in temperature and for an isothermal process as V 

doubles the pressure halves. It is an irreversible process clearly as it can’t run 

backwards. This is approximately what was found for air by Joule. In fact there is a very 

slight cooling. The molecules on the right hand side are on average further apart and 

therefore their potential attraction drops meaning that their potential energy goes up 

(recall that the attractive potential is a negative quantity). If the potential increases then 

the kinetic must decrease in order that the total, U = 0. This is the origin of the slight 

cooling. It is an effect that can be expected for real gases where U = U(T, V) but not for 

an ideal gas where U = U(T). However that the effect is small shows that the ideal 

approximation is a good one. 

 

V V 
2V 

Gas Gas Vacuum 
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Joule Kelvin Effect. 

 

The Joule Kelvin effect is used in the liquefaction of gases and is also known as the 

throttling effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

We begin with the situation depicted in the top figure where a porous plug divides a 

chamber with adiabatic walls into two. There is a piston either side, on the left hand side 

it is withdrawn and there is gas in the left  hand side at initial pressure and temperature, 

Pi and Ti The pressure is slightly greater on the outside of the piston forcing it slowly in 

and pushing the gas through the porous plug into the right hand chamber where the right 

hand piston slowly withdraws (the pressure is slightly lower on the outside of this piston 

to allow this) to accommodate the arriving gas at a final pressure and temperature, Pf 

and Tf . This is an isobaric process where the pressure doesn’t change and the work 

done on the gas in forcing it through the plug is 

 

   ii
V

iBeforePlug VPdVPW

i


0

    (3.131) 

 

The work done by the gas expanding into the right hand side is 

Pf  - dP 

Pi +dP 

Pi  

Pf  

Pi , Ti , Vi 

Pf , Tf , Vf 
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   ff

V

fAfterPlug VPdVPW
f


0

    (3.132) 

 

We can apply the first law recalling that the walls are adiabatic and therefore Q = 0 

 

   ffiiif VPVPWQUUU     (3.133) 

 

Or re-expressed as 

 

   iiifff VPUVPU      (3.134) 

 

and therefore we find 

 

   fi HH    0H    (3.135) 

 

This is an isenthalpic process. 

 

In general there will be a temperature change in the process and either heating or 

cooling can occur. 
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or 
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Where JT is called the Joule Kelvin or Joule Thomson coefficient (Lord Kelvin and 

Thomson are of course the same person!) and J is the Joule coefficient. 
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To proceed further we need to examine the enthalpy of real gases and for this we shall 

use the Van der Waals equation of state 3.113. 
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And its internal energy 3.117 
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The enthalpy is defined in the usual way, 

 

  PVUH VdWVdW   

 

We can proceed by multiplying out the terms in the equation of state and rewrite the 

equation as 
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  (3.138) 

 

We can now make approximations to the equation of state because the correction terms 

are small ie,   

 

P
V

an


2

2

      (3.139a) 

and 

   Vnb        (3.139b) 

 

The approximation we use is to neglect all terms of second order in smallness in the 

equation of state 
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We can use this and the expression for UVdW to write down the enthalpy 
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We need JT
HP
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
to get the Joule Thomson coefficient 

 

Since T and P are the state variables of interest we need the enthalpy in terms of these 

two variables, the above expression is in terms of T, V and P. We need to replace 
V

a
 in 

favour of P and T 
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where we have dropped terms in first order of smallness. 

 

Thus 
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Now we can proceed to obtain the Joule Thomson coefficient 
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Now solving for JT
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All of the terms in the denominator on the RHS have positive values and it is therefore 

positive, however the numerator may take either sign dependant on the temperature and 

so then may JK. 

For b
RT

a


2
 we have a positive coefficient, ie. for low enough T we have JK > 0 and a 

drop in pressure produces a drop in temperature whereas if T < 
Rb

a2
 a drop in pressure 

will cause an increase in temperature  

 

Rb

a
TInv

2
  is known as the inversion temperature and divides the two regimes. 

 

This process is used in a continuous flow process (rather than the single shot process 

schematically described earlier) called the Linde liquefaction process which is described 

in Finn page 140. 


