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6 THERMODYNAMICS OF PHOTONS & 
PARAMAGNETS. 

 

The presentation of thermodynamics so far has relied almost completely on the 

application of this powerful tool to the regime of gases usually ideal but occasionally 

the notion of the van der Waals gas has been summoned up to give thermodynamics a 

wider currency (or to make it a little harder). Thermodynamics itself presents us with a 

powerful and completely general methodology that can be applied over an enormous 

range of systems. We shall now look at a further two areas of applicability where 

thermodynamics offers us useful insights; the photon gas and the paramagnet. 

 

a) Thermodynamics of Cavity Radiation. 
 

In the course so far we have made great inroads into thermodynamics using the 

paradigm of the “Ideal Gas”. The simple idea is that collisions of particles with the wall 

of a container containing the gas and consequent exchange of momentum lead to a 

pressure and this was related to the internal energy (kinetic energy) of the gas particles, 

PVU
2

3
 . Collisions of gas particles with each other (except in as far as they help to 

establish a mean momentum/kinetic energy) and potential energy interactions were 

ignored by making the gas dilute. It is the case that many other systems may be treated 

as gases albeit not ideal gases obeying Boyle’s law. Common examples are;  

(i) The photon gas applied to the radiation contained within a cavity being 

treated as a gas of photons and  

(ii) The conduction electrons in a metal being approximated as an electron 

gas.  

The former are bosons and as such do not interact with each other. It is those that we 

shall deal with in order to break away from the ideal gas paradigm and demonstrate the 

more general applicability of thermodynamics. 

 

As was seen earlier we can find the relation between the total internal energy, U, of a 

gas of , N, photons and its pressure ie. the equation of state, in the following manner. 

 

A photon’s momentum, p, and energy, E, are given by; 
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 k
h

p 


 (de Broglie )  hE   (Planck) 

 

Using the relation, c , we can re-arrange to find 

 

  pcE    (Einstein)  

 

We also have  cv 


  (Einstein ) 

 

Therefore 

 

  Ec
c

E
vp 











 

 

We already have for an ideal gas the equation of state written in the form 

 

   vp
N

PV



3

 

Now all photons have the same momentum (if the wavelength is the same) and the 

average is no longer necessary. Thus for photons this equation of state, using what we 

have so far derived becomes 

 

   UE
N

PV
3

1

3
  

Or we can define an energy density, 
V

Uu  and have for the pressure, 

 

    uP
3

1
  

 

We should note that radiation pressure is a real phenomenon and is used for example 

in attempts to confine thermonuclear reactions in fusion experiments and also to try 

and achieve laser cooling of atoms. 
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The photons in the cavity are spread across all wavelengths and so we split U up into its 

spectral components; 

 

    duu 


0

 

Where du  is the internal energy density contained in the wavelength range between 

 and  + d. 

In equilibrium u must be isotropic just as in a material gas where the 

molecules will have an isotropic distribution due to many random collisions with the 

walls. It is also the case that u must be independent of the wall 

material. We can prove this by considering two cavities of different materials but at 

same temperature, T = TA = TB separated by a wall with a hole fitted with a filter that 

transmits only photons in the wavelength range between  and  + d. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Material A 

TA 

Material B 

TB 
TA = TB 

Filter passing only photons 

between and +d 

Isolated System 
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Suppose that it is the case that BA uu   . Then net energy at  must flow from cavity A 

to cavity B. This would mean that TB increases while TA decreases and then we have 

TB > TA. But the walls of A and B are like heat reservoirs and we have transferred 

heat from a cooler to a warmer reservoir without doing work and this 

is illegal according to the Clausius form of the second law! It must then be 

the case that BA uu   . A little thought tells us that the only property of a cavity that u 

can depend on is the temperature, T (it is the energy density, 
V

U  ). 

)T(uu   . 

And therefore from this it follows that 

    )T(uduu 



0

 

According to an argument by Boltzmann the cavity radiation can be treated like a P-V-T 

system and therefore the thermodynamic identity may be used; 

 

    PdVTdSdU   

 

V)T(u)T(U       PdVTdSV)T(uddU   

 

We can use the equation of state uP
3

1
  

 

     dV)T(uTdSV)T(ud
3

1
  

 

Rearranging (and dropping the explicit reminder that u is a function of T only u(T) 

 

   udVVdTuudVTdS /

3

1
    










dT

du
u /  

 

Where d(uV) was expanded using the product and the chain rules. 
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   dV
T

u
dTV

T

u
dS

/


























3

4
 

NB. T and V are the natural variables of S as found previously for a gas and the above 

equation is in the form; 

 

   dV)T,V(bdT)T,V(adS   

 

dS is a perfect differential, therefore, 
T

b

V

a









,  ie. 
























VT

S

TV

S 22

 

 

  














































23

4

3

4

T

u

T

)T(u

T

u

TT

u
V

T

u

V

///

 

 

23

4

3

4

T

u

T

u

T

u //

  

Re-arranging 

 

23

4

3

1

T

u

T

u /

    
dT

du

T

u
u /  4  

 

Re-arranging this 

 

  
T

dT

u

du
4  

Integrating 

 

  const)Tln(constTln4uln 4   

 

  
V

U
AT)T(u  4  

 

Where A is a constant independent of material. 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 148 

 

From what has preceded we may find S by using u = AT
4
 in our previous expression for 

dS as follows; 

 

dVATVdTATdV
T

)T(u
dTV

T

)T(u
dS

/
32

3

4
4

3

4
























  

 

Because S is a function of T and V we can write the differential of S as follows 

 

   dV
V

S
dT

T

S
dS

TV


























  

 

By comparing these last two equations we find expressions for the rate of change of S 

with T at constant volume and with V at constant temperature; 

 

 VAT
T

S

V

24











 integrate wrt T  )V(fVATS  3

3

4
 

And 

 3

3

4
AT

V

S

T













 integrate wrt V  )T(gVATS  3

3

4
 

 

Where the two deduced differentials of S have been integrated wrt the variable 

concerned 

The only consistent solution to these two forms of S is 

    constVATS  3

3

4
 

 

If we require that at T = 0, S = 0 then we require that const = 0. 

 

 

    VATS 3

3

4
  
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Or the entropy density, s, is related to temperature by; 

    3T
V

S
s   

 

Application; Adiabatic Expansion of Photon Gas 

 

In an adiabatic expansion 0Q  and therefore 0S  or S is constant. 

S = const  constVT 3     constTV 3
1

 

 

For Blackbody Radiation we have V  R
3
 where R is a scale factor 

 

    constTRTV 3
1

 

We can rewrite this in terms of P and V by using the equations of state 
3

u
P   and 

4ATu  . 

   
3

4AT
P    

4
1

3










A

P
T  

Substituting 

 

  constVP 3
1

4
1

    constPV 3
4

 

 

Blackbody Radiation 

Cavity radiation is known in particular circumstances as blackbody radiation. Returning 

to our cavity and the definition we have for the spectral distribution of the internal 

energy, u , where du  is the internal energy density contained in the wavelength 

range between  and  + d.. Now we turn attention to the walls of the cavity and make 

the following definitions; 

(i)  is the spectral absorptivity of the surface of the wall at temperature T 

(ii) d the fraction of incident energy that is absorbed by the surface between 

 and  + d.. 
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(iii)  is the spectral emissivity of the surface at temperature T 

(iv) d is the energy emitted per unit area per second by the surface between  

and  + d. 

 

It will be shown in later lectures that the number or flux of particles,  , in a gas of 

density n striking unit area of the wall in unit time is given by 

   vn
4

1
    

where for photons the mean speed cv   and 
4

nc
 . 

 

Consider the surface of the cavity at temperature T. The energy absorbed per unit area 

per second in the wavelength interval ( ,  + d) is  









  Edn

c

4
   du

c

4
 

Where nd is the photon density in the wavelength interval and 



hc

hE   is the 

photon energy. 

Now, we know that in equilibrium the energy absorbed is equal to the energy emitted 

and thus 

      ddu
c


4

 

And hence 

 

    )T(u
c










4
  

Where the quotient on the left hand side, 







 is a universal function of  and T 

irrespective of the material of the surface.  

 

This is known as Kirchoff’s Law. 
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A black body is one where all of the radiation falling on it is absorbed, 1
Blackbody
  

and it follows from this definition of a blackbody and Kirchoff’s law that the emission 

from a blackbody in the interval range is; 

   )T(u
cblackbody

 4
  

Integrating to find the total energy emitted 

   

  4

00 444
T

cA
)T(u

c
d)T(u

c
d

blackbody




   

Total energy emitted is  

 

4TTot     The Stefan Boltzmann law 

 

   42810675
4

 KWm.
cA

  is the Stefan constant 

It also follows that 

 

   44 4
T

c
AT)T(u


  

and 

   VT
c

VATS 33

3

16

3

4 
  

 

 

To find the Planck black body radiation distribution is a little more involved and 

requires the use of ideas from statistical physics but the result is 

 

 

1

18

5











Tk
hcexp

hc
),T(u

B



  

And noting that the energy of a photon 



hc

hE   we may split this expression up 

into three parts 
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  



 h

Tk

h
exp

),T(u

B









































1

18

4
 

The significance of the first two parts of the above expression will become apparent 

after studying statistical physics but they are; 

 

 

     energyphotonfunctionondistributiEinsteinBosestatesofdensity),T(u 

 

It could be shown using this distribution and the Stefan Boltzmann law that; 

   
23

45

15

2

ch

kB
   

 

We should note at this point that we have not yet used any quantum mechanical 

formulations explicitly and the closest we have come is the use of E = pc to 

formulate the equation of state UPV
3

1
 . 

 

Example: Radiative cooling of a satellite. 

We take for our example a satellite powered by a nuclear heat source supplying 10kW 

of heat. The satellite is a sphere of radius 1 m and has a black surface (behaves as a 

black body radiator). We want to find the temperature of the satellite and do this as 

follows;. 

In the steady state we can say that; 

 

 Energy produced = Energy radiated away 

 

therefore 

  10kW = Surface Area  T
4
 = 4r

2
T

4
 

 

 10
1212

428

3
4 1039.1

6.71

10

7.514.34

10

KWm107.514.34

W1010
T 










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    K36.343T   

Example: Energy loss from human body. 

Assume the human body is an ideal radiator of area  1.8m  0.3m  2 = 1.08m
2
  1m

2
. 

The energy loss from radiation is then  

    W526K37273107.51Tm1 44842    

 

To maintain a constant body temperature this heat loss will need to be made up by heat 

absorbed at the body surface plus heat generated within the body by the bodies 

metabolism. 
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b) Thermodynamics of Paramagnetism. 

Another system of particles that is susceptible to a thermodynamic analysis is that of a 

collection of electron spins that are able to align in an applied external magnetic 

field. 

A review of magnetic materials and susceptibility. 

We need to begin by reviewing the properties of a paramagnetic system in order to find 

the work done on such a system and to develop the paramagnetic equivalent of the 

thermodynamic identity. We will also obtain a few simple definitions relating to how 

we describe the phenomenon of magnetisation. 

Consider an external magnetic induction field 0B


, produced for example by a solenoid. 

We place a paramagnetic material inside the solenoid and consider that at the molecular 

level the spins are bar magnets. The electron spins or the entire atom may in fact 

constitute the “molecular bar magnet”. This molecular magnet and its interaction with 

an applied magnetic field is best described by its magnetic moment. 

From electromagnetism we recall that the magnetic dipole moment has the curious units 

of current  area. 

 

 

 

 

 

 

 

 

 

 

 

The magnetic moment m on the left is equivalent to a current loop of area a and current 

i shown on the right producing the magnetic moment m = ia directed perpendicular to 

the area and with an identical magnetic field. 

22410279
2

Am.
m

e
m

e
e




 is the intrinsic electron dipole moment, 

equivalent to  

i 

i 

a 

B 

m 

|m| = ia 
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The magnetic moment of a single electron spin is very small and in the paramagnetic 

material they are aligned randomly and so we observe no macroscopic effect. 

However, by putting this material with its collection of magnetic dipoles into an 

external magnetic field then it is preferable energetically for the spins to align with the 

magnetic field in order to lower the potential energy of the dipole, Bmu e


 and this 

alignment acts to increase the overall B field in the material, it becomes magnetised. We 

now see how this is described; 

We begin by reminding ourselves of Amperes law relating current to magnetic 

induction; 

   IdlB 0   

 

Where I is the total current enclosed by  

 

 

 

 

 

 

 

     0000 nIB   

 

Where 0 is the permittivity of free space and n0 is the number of turns per unit length. 

 

 

 

 

 

 

 

 

 

 

 

I0 I0 
B0 

B0 B0 

B0 increasing 

Random 

alignment 

Perfect  

alignment 
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As the external magnetic field is increased the alignment goes from random to perfect at 

very high magnetic fields where the potential energy reduction is greatest and low 

temperatures where thermal agitation usually acting to disturb the alignment is reduced. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

All the aligned dipoles are equivalent to aligned turns of current acting together as a 

large current loop with magnetisation 

 

 mm inB 0    nm is the number of dipole layers per unit length. 

 

 
L

N

a

m
B

L

m 0   N
L
 is the total number of layers. 

 

 
V

mN

L

N

A

mN
B

VLA

m 00    N
A
 is the number of dipoles in area A 

 

  LAV NNN     is the number of dipoles in volume V 

 

a 

i i 

i 

i 

i i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

i 

I 

A 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 157 

 M
V

Bm 00  
M

   M is the total magnetic moment in volume 

V and M is the magnetisation per unit volume. 

The total B field is then 

   MBBBB m 000   

In reality this is a vector relation but we assume a simple isotropic homogeneous 

medium in which B0` will be in the same direction as M . 

We now have the tools we need in order to find the work done on a paramagnetic 

system and to thus enable us to use the tools of thermodynamics. 

 

Work done on a paramagnetic system. 

 

We imagine the paramagnetic system of magnetic dipoles to reside within a solenoid 

which has a current I0 flowing through it. There will be a total magnetic field, B due to 

the externally applied magnetic field and the magnetic field created by the aligned 

dipoles (described by the magnetisation M). If the current is increased from I0 to I0 + dI0 

the magnetisation is increased as the dipoles are forced further into alignment and this 

involves the increase in current doing work on the system. 

The total field is enclosed by the solenoid wires so that there is a total magnetic flux, , 

enclosed by the wires; 

 

    Nfluxtotal  

Where N is the total number of turns and  is the flux enclosed by one turn. 

 

     VBnBALn 00   

 

L is the length of the solenoid and n0 the number of turns per unit length. A is the cross 

sectional area of the coil. 

 

As I0 changes  I0  I0 + dI0  B  B + dB 

 

This produces a change of flux and by Lenz’s law a back emf,  , is induced of 

magnitude 
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




d

dB
Vn

d

d
o  

 

Work is performed in driving charges (current) against this emf. In the interval d an 

extra charge dIdq 0  is driven through the circuit against the emf thus doing work 

    VdBIndI
d

dB
VndqdW 0000 








 


  

We have already,  0
0

00
1

BIn


  

so 

   MddB
VB

dB
VB

dW 00
0

0

0

0 


  

 

Consider a finite change from initial
0B  to final

0B so that we can find the work done, W 

 

  dMBV
B

VdWW
f

i

f

i

f

i
 0

0

2
0

2
  

 

  )VM(dBBB
V

W
f

i

if









 0

2

0

2

0
02

  

 

The first term is the change in vacuum field energy and as we are only concerned with 

the work done on the paramagnetic system we must ignore this and thus 

 

  dW = B0d(VM) = B0(MdV + VdM) = B0dM (dV = 0) 

 

where M, as before, is the total magnetic moment of the system = VM. 

 

The work done ON the paramagnetic system is then 

 

    dW = +B0dM 
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The first law and paramagnetic systems. 

 

Using this we may write down the first law for a paramagnet with a fixed volume 

 

   dU = TdS + B0dM 

 

we should compare this first law for a paramagnet with that for a gas 

 

   dU = TdS – PdV 

 

There is a clear analogy to be drawn with B0 playing the role of –P (note the sign) with 

M being analogous to V. We know that for the gas the equation of state relates P-V-T 

and we therefore expect the equation of state for the paramagnetic system to relate B0, 

M and T. 

 

Curie’s Law & Equation of State. 

The degree of alignment amongst the atomic magnets, as indicated by M,  will depend 

on the magnitude of the applied magnetic field, B0. It is in fact proportional to the 

applied field at low applied fields 

 

  Bm = 0M = mB0 

 

At higher applied fields as the alignment tends to saturate the magnetisation will vary 

much more slowly as B0 is increased. 

The quantity m is the magnetic susceptibility of the medium.  

Down to very low temperatures, T, the variation of m has been determined to be 

 

   
T

m
C

    Curie’s Law 

 

Where C is Curie’s constant. Curie’s constant is a material property depending on the 

particular material. 
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Curie’s law allows us to write 

 

   00M B
T

C
  

Or equivalently 

 

   M









V

T
B

C
0

0


 

and this is the equation of state of a paramagnetic system at low temperature.  

 

It tells us that if B0 increases the magnetisation increases proportionately and also that if 

the temperature increases the magnetisation decreases as thermal agitation destroys any 

alignment that is producing the magnetisation. At very high fields the molecules tend to 

complete alignment and Curie’s law cannot continue to hold. Similarly at extremely low 

temperatures where thermal agitation has very little effect on the degree of alignment 

such that mB0 >> kBT, (between 0,01 and 1K ) the magnetic alignment tends easily to 

saturation and Curies law become inapplicable. 

 

We spent a long time at the beginning of the course studying an ideal gas and obtaining 

things like specific heats at constant pressure and at constant volume. The paramagnetic 

system has its equivalent with 
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These heat capacities are measured experimentally to have a simple behaviour in the 

low temperature range where Curie’s law applies. 
0BC depends on both T and B0 but 

takes a simple form when B0 is zero described by Schottky’s Law 

 

200 0
000

T

Vb
),T(C)B,T(C BBB 


 

 

b is a material constant. 

 

The Paramagnetic Refrigerator. 

 

At temperatures where the Curie and Schottky laws apply (0.01 < T < 1K) the 

paramagnetic system is used as a very efficient refrigerator in laboratories where such 

low temperatures are required. A qualitative description of the paramagnetic 

refrigerator now follows before it is formally analysed later on. 
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Steps 1 to 3 lower the temperature of the paramagnetic system because the entropy of 

the system depends on B0 and T in a particular way as shown below. 

 

 

 

` 

 

 

 

 

 

 

 

 

 

 

 

As B0 increases at constant temperature S decreases as order (in this case alignment) 

increases. The initial isothermal process from B0 = 0 to finite B0 is shown in the above 

diagram along with the adiabatic reduction of B0 back to zero. Note the adiabat is the 

same as S = 0 or isoentropic. 

This cooling effect is known as an entropic cooling and is analogous to the cooling of a 

cup of tea when sugar is added and melts. In that case the sugar goes from an ordered 

crystalline state (low entropy) to a disordered solution state (high entropy). The increase 

(positive change) in entropy of the sugar requires that heat is supplied by the tea to the 

sugar ie positive flow from tea to sugar as 
T

Q
SSugar


 . This is an effect always 

seen at a phase change (latent heat) and the paramagnetic material is undergoing a phase 

change in the process of adiabatic demagnetisation from ordered to disordered system. 

To obtain a more complete and formal analysis of the process requires that we know 

more about how S depends on T and B0 and to find this S(T,B0) is the next problem. 
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The Magnetic Gibbs Potential. 

To analyse this refrigeration we will want to treat T and B0 as independent variables of S 

and find the variation of S(T, B0). To begin, write the thermodynamic identity (first law) 
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This has S and M as the independent variables, U = U(S,M) and we need to find a way 

to change variables. In order to do this we take a smart step and change from using U to 

G
Mag

, a new function of state,  

the magnetic Gibbs function defined as follows; 

 

  M0BTSUGMag   

 

As an aside we will see the general Gibbs function for a P-V-T system later and this is 

defined as 

 

   TSHPVTSUG   

 

We can compare this with the current Gibbs magnetic function and note that +PV 

becomes –B0M. This brings to mind the infinitesimal work done on a paramagnetic 

system that we have earlier discovered MdBdW 0  and its comparison with that 

used for a P-V-T system, PdVdW  . 

 

We now return to G
Mag

 and to see how defining this function helps we need initially to 

find the differential of MagG . The following process is something used frequently to 

find a Maxwell Relation between the partial differentials of a state function wrt its 

natural variables 

Step 1. Identify the natural variables as follows 

  00 dBdBSdTTdSdUdGMag MM   
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By using the thermodynamic identity MdBTdSdU 0  we may tidy this up 

 

  0dBSdTdGMag M  

 

This has identified the natural variables of MagG  = )B,T(GMag
0  and  

 

Step 2  This allows us to write an expression for the infinitesimal MagdG  in 

terms of its state variables as follows 
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Step 3  Comparing the two expressions for MagdG  we may then identified the 

following relations between the partial differentials of the state function wrt its natural 

variables and and some other state functions; 
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We know that MagG  is a state function from its definition  
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Step 4.  and finally this implies that 
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In other words the identity 
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must be true. This is an example of what are known as Maxwell Relations  we 

will discover others later on. 

Since G
Mag
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and the Maxwell relation that was just found as follows  
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(ii) To find 
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 we modify the definition of the heat capacity and obtain 
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However, 
0BC  is only known so far at B0 = 0 from Schottky Law so find 

0BC (T, B0) 
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We now use these two partial differentials from (i) and (ii) to discover the function  

S(T, B0 ) by integration wrt B0 and wrt T respectively; 
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Holding T as a constant 
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Holding B0 as a constant 
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Taking both of these solutions for S the only consistent solution for S is then 
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NB. As T  0 quantum effects will alter this result and as T  0 then S  0 which the 

above result does not, but it remains good for the range 0.01  T  1K. 

Now that we have S(T,B0) the formal analysis of the paramagnetic cooling that was 

described qualitatively is possible. 
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ANALYSIS OF PARAMAGNETIC COOLING 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The process of using isothermal magnetisation as a refrigeration process is 

demonstrated on the diagram above. We begin at some initial temperature Ti (with our 

system shown previously) and with no applied magnetic field, B0 = 0. A magnetic field 

is applied isothermally aligning the dipoles and reducing the entropy of the system of 

paramagnets before reducing the magnetic field to a value, , just slightly greater than 

zero adiabatically (with no heat flow and hence no change in entropy). To analyse this 

process we calculate the change in entropy 
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All quantities on the RHS of the above equation are positive and therefore the entropy 

change is negative, the entropy is reduced in a reversible magnetisation and therefore 

dQ < 0 ie. heat has flowed from the paramagnetic system. 
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The next step is an adiabatic reduction of the magnetic field to its final value and there 

is no change of entropy or heat flow.  
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Re arrangement gives 
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If the adiabatic reduction of the magnetic field had taken B0 to zero then 
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This result (for Bf = 0) has been well confirmed experimentally with paramagnetic salts 

including Gadolinium Sulphate and Caesium Magnesium Nitride. 

On the other hand, if the final magnetic field is slightly above zero, B0 = , an 

interesting result follows from the analysis when b
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. Our analysis now 

simplifies to 
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But we have Curie’s law which gives  
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Telling us that as we reduced the applied field B0 adiabatically the magnetisation 

remained the same, the dipoles remain aligned. We knew this anyway as S didn’t 

change on the final step implying no loss (or increase) of order. We can maintain an 

appreciable magnetisation with a very weak applied field. 

This has an interesting experimental application in the hunt for parity violation. A 

sample of Cobalt 60 was treated in this way being subjected to a high maximum field at 

T = 0.01K before that field was reduced to one just slightly above zero. The aligned 

electron moments imply aligned nuclear magnetic moments and the experiment 

observed anisotropic electron, , emission from the Co60 (Ambler, Hudson and Wu) 

demonstrating that parity is not a symmetry of nature. 

 

A microscopic/statistical viewpoint of paramagnetic cooling. 

For a picture of what is occurring microscopically we need to deal with quantum spins 

which exist in a finite number of states depending on the total spin 
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The energy of the spin states will be slightly different in applied magnetic fields (they 

prefer to line up) but in zero field they are degenerate  (have the same energy). At T  0 

and B  0 there will be equal numbers of electrons (or whatever the spin is) in each of 

the states. The diagram below illustrates the splitting of spin levels for a spin 
2

1
 particle 

such as an electron. 

 

 

 

 

 

 

 

 

 

Once a magnetic field is applied there will be many more electrons in the lower of the 

split states provided the energy of splitting (proportional to the field) is much greater 

than kBT. With the paramagnetic cooling this situation remains the case as the magnetic 

field is taken back to zero and the energy splitting is also removed. 

The ratio of electrons in either state is given by the Boltzmann factor which you will see 

in much greater detail in the Statistical Physics course but simply stated 
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Where E and E are the energies of the spin up and spin down electrons respectively. 

Looking at the Boltzmann distribution given in the above equation. If there is no 

magnetic field and E = E then the exponential is unity and there are equal numbers in 

the up and down state. While the field is on and E - E is negative there will be greater 

numbers in the up state. But once we have reduced the field, B0, and iB
f

m TkB 
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2  

this situation remains and the Boltzmann distribution is not a good description of the 

situation any longer unless the temperature has in fact dropped drastically and 

fB
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2 . This must be the case and it is what we have seen by other analysis. 

B0 E 
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The temperature as defined by the Boltzmann distribution is known as the 

STATISTICAL TEMPERATURE which may or may not be the same as the 

kinetic, thermodynamic and empirical temperatures. This is only the case in non-

equilibrium circumstances. For example, far from equilibrium in a laser the 

statistical temperature will be negative! 
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