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7. THERMODYNAMIC POTENTIALS, NATURAL 
VARIABLES & MAXWELL RELATIONS. 

 

Some More Thermodynamic Potentials. 

The Gibbs Function, sometimes known as the Gibbs Free Energy or Gibbs Potential 

has already been introduced in its magnetic form when dealing with the 

thermodynamics of paramagnetism. There we defined the magnetic Gibbs function 

 

    M0BTSUGMag   

 

Recall here that the third term on the RHS is the equivalent of PV for a gas system (ie. 

related to the work done) and they were used to obtain the Maxwell relation derived 

earlier 
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 is an example of what are known as Thermodynamic Potentials. Further 

examples of thermodynamic potentials that we have already come across are the 

internal energy, U, the sum of the individual energies of all of the constituent atoms of 

the system given in differential form by the thermodynamic identity; 

 

     PdVTdSdU   

 

and the enthalpy, H, a potential function found useful in isobaric situations ie. where 

the pressure is constant, given by 

 

PVUH  . 

 

The Gibbs function or Gibbs free energy for a fluid is  

 

     PVTSUG   
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Note the plus sign for the PV term in this definition of G compared with B0M. This is 

because minus PdV is the work done by a fluid system whereas plus B0dM is the 

work done by the paramagnetic system. The Gibbs function is a very useful example 

of a thermodynamic potential that we may choose to define in order to simplify the 

analysis of a certain group of problems. A further potential that we choose to define 

that can be of great use in certain problems is the Helmholtz potential or Helmholtz 

free energy, F , defined as 

 

TSUF   

 

Just like U, H and S the new functions G and F are both functions of state. 

We can see this through their definitions which all involve functions of state only viz 

U, T, S, P and V which have unique values for a particular equilibrium state. H, G and 

F must also, therefore have unique values for any given equilibrium state. This in turn 

means that the change in G or F , G and F respectively , are independent of path 

taken from initial to final state or equivalently that dG and dF are both perfect 

differentials. Their use becomes apparent when we are interested in systems that are 

not isolated but that are in contact with a reservoir such that observations/experiments 

are carried under conditions of;  

 

1. Constant temperature and pressure (Gibbs function) or  

 

2. Constant temperature and volume (Helmholtz function )  

 

eg. systems open to the atmosphere in contrast to the isolated systems we have been 

interested in up until now. 

 

It would be useful to find a way to characterize the equilibrium state of such open 

systems in the same way that we could for isolated systems, ie. We want to find a 

condition analogous to the maximum entropy condition that we may use for an 

isolated system that will be equally useful for these open systems. 
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We will consider the above system in local equilibrium (eg. we may allow chemical 

reactions to be taking place). The system can absorb heat and can DO WORK ON 

the surroundings and on the reservoir. 

(i) Work on the reservoir is WNecessary in order that the laws of 

thermodynamics are maintained 

(ii) Work on the surroundings is WUseful 

 

We can apply the first law to the system to obtain 

 

   TotalWQWQU    

 

   UsefulNecessary WWQU   

Note the use of the sign convention for work done by the system. 

WUseful 

System Reservoir 

T0 , P0 

eg. Atmosphere 
 

Moveable wall 

To keep system 

pressure adjusted 

Q 

Moveable wall 

or piston 

WNecessary 

Adiabatic enclosure 

around system and 

reservoirl 
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The system plus reservoir are thermally isolated by the adiabatic wall implying that 

for spontaneous changes 00  SS   

Where S is the entropy change of the system and S0 the entropy change of the 

surroundings 

   
0

0
T

Q
S


  

 

   0
0


T

Q
S  

 

   NecessaryUsefulTotal WWUWUQST  0  

 

   dVPWNecessary 0  

 

This allows us to write 

 

   UsefulWVPSTU   00  

Or  

   TotalWSTU   0  

 

The  denotes changes in the system variables. 

 

As T0 is held constant (the system is in thermal contact with a heat reservoir) we can 

write 

 

    TotalWTSU   

 

And because P0 is also held constant 

 

    UsefulWPVTSU   

Now we see the point of F and G as we can write in succinct form 
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  TotalWF   

 

  UsefulWG   

 

This is the case of T = T0 and P = P0 throughout the change but we can let these differ 

between the initial and final states if required by the problem. 

 

We can now restrict the problem a bit by giving the entire system rigid walls (constant 

volume) so that WTotal is zero. 

 

  0 UsefulNecessaryTotal WWW  

Or 

  UsefulNecessary WW   

 

This then tells us that  

 

 0 F   or in other words  0F  

 

True equilibrium corresponds to a minimum in F = U – TS, which can 

be obtained by lowering U or by increasing S. This of course corresponds to 

what we know already from classical physics and from the second law respectively. 

 

We are now able to make two important statements as follows; 

 

 

(i) The equilibrium condition for a system held at constant 

volume and temperature T by a heat reservoir is that 

 

the Helmholtz free energy should be a minimum 
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If only the outer wall around system plus reservoir is rigid then we can say that  

  0UsefulW  

And this in turn allows us to make a statement about the \Gibbs free energy 

 0 G   or in other words  0G  

 

 

(ii) The equilibrium condition for a system held at constant 

pressure and temperature is 

 

the Gibbs free energy should be a minimum 

 

 

These two statements are forms of the second law, valid for non-

isolated systems, which take account of entropy changes both in the 

system and in the surroundings. 

 

We now look at the natural variables on which F and G depend by looking first at 

their definitions and the incrementals that result from these definitions as has been 

done for other functions of state previously 

 

TSUF   

 

  SdTTdSdUdF   

 

As always we can find simplification in the above by invoking the 1
st
 law in the form 

of the thermodynamic identity 

 

  SdTTdSPdVTdSdF   

 

  SdTPdVdF   

 

And we have found the natural variables of F as the above implies that 
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  )T,V(FF   

 

And as we have done previously we use the natural variables of F to write the 

incremental dF as 

  dT
T
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and by comparison with the earlier equation obtained via the thermodynamic identity 
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We have found expressions for the thermodynamic parameters, P and S in terms of 

partial differentials of the Helmholtz free energy wrt one of its natural variables! 

 

It further follows that as dF is a perfect differential we may make use of the fact 
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Implying from our expressions for P and S that 

 

 
TV V

S
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P
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  which is a new Maxwell Relation 

 

We can carry out the same series of operations to investigate G and find a further 

Maxwell Relation  

 

   PVTSUG   

 

   VdPPdVSdTTdSdUdG   
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From the first law  PdVTdSdU   

 

and we simplify dG 

 

   VdPSdTdG   

 

We can see that the natural variables of G are T and P allowing us to write 

 

G = G(T,P) 

 

As previously we use the natural variables of G to write the incremental dG as 
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And by comparing again the coefficients of the increments of the natural variables in 

the two equations we find 
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We have again found expressions for the thermodynamic parameters, S and V in 

terms of partial differentials of the Gibbs function wrt one of its natural variables! 

 

And again by making use of the fact that dG is a perfect differential we may write, 
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This allows us to write down another Maxwell Relation 
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We have now explored four potentials, found their natural variables, and to go with 

them identified four Maxwell relations which we bring together here.: 

 

PdVTdSdU    U(S, V)  
VS S

P

V
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PVUH     H(S, P)  
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TSUF     F(V, T)  
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PVTSUG    G(T, P)  
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General Observations Concerning Maxwell Relations, the 

Thermodynamic Potentials and Equations of State  

Once we have defined any particular thermodynamic potential,  say, then the 

incremental form for  may be written completely generally as  

 

  i
i

idyxd   

Where xi and yi are known as conjugate pairs and the yi 

are the natural variables of .  

In the same way that in mechanics the force acting multiplied by the incremental 

displacement in a mechanical system gives the incremental change in energy, U = Fdx 

, conjugate variables consist of a generalized force and a generalized displacement for 

example in a P-V-T system they would be pressure P as a generalized force and dV 

the generalized displacement and dW = -PdV then P and V are a pair of conjugate 

variables, similarly dQ = TdS and T and S are the generalized force and displacement 

and form a conjugate pair of variables 

We see this for example in the case of the Gibbs function  

 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 183 

VdPSdTdG   

 

with (S, T ) and (V,P) being conjugate pairs and (T, P) the natural variables. 

 

We have also seen that we can obtain thermodynamic parameters in terms of partial 

differentials of the potential wrt its natural variables; 
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In the case of the Gibbs function we obtained S and V. These equations are equations 

of state since they specify values of functions of state in terms of the variation of the 

potential wrt its natural variable. 

Finally where xi and yi are conjugate variables and yi is a natural variable of the 

potential we obtained from cross differentials of the state equations 
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And from these we obtained the Maxwell relations. 

 

Applications of Maxwell Relations. 

(i) For fluids 

To begin with we examine the specific heat of a fluid at constant volume, a quantity 

which involves the internal energy (recall that for CP it was more natural to swap U 

for H) 

  )V,T(UU   

where the natural variables have been switched to T and V from S and V. 

We have an expression for CV, the specific heat at constant volume; 
V

V
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U
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Which may be rephrased as dV = 0 for CV and therefore dU = TdS. 
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V
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Importantly CV can of course be measured;. 

Using the thermodynamic identity; 
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We can rewrite this using one of the Maxwell relations; 
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Example Ideal Gas 

   nRTPV    
V

nR

T

P

V













 

therefore 
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Ie. U on an isotherm is zero as was discovered some time back. 

 

Example: Magnet 

 )T,(UU M  
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And therefore 

 

M
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To go further we need a further Maxwell relation; 

 

 TSUF   

 

 SdTTdSdBTdSSdTTdSdUdF  M0  

 

MdBSdTdF 0  
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Using this in our earlier expression 
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And we have from previous work the Curie law  M
CV

T
B 0

0


  

 

For a paramagnet 
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  00
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Therefore we may conclude that 

 

  )T(UU Mag   

 

Example: Specific Heat Capacity at constant pressure. 

 

To find CP we use S = S(V,T) 
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Making a change dT at constant pressure 
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And therefore using the same Maxwell relation 
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We can use a cyclical relation and the reciprocal relation twice to obtain; 

 

1




































TPV P

V

V

T

T

P
  

TPV V

P

T

V

T

P





































 

 

    

2

PT
VP

T

V

V

P
TCC 
























  

 

The volume expansion coefficient is given by  
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And the isothermal bulk modulus is given by  

 

  
TV

P
V 












  

 

So we can finally obtain for the specific heat at constant volume the expression; 

 

   22 
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TVCV
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8. PHASES AND PHASE CHANGE 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Even for the simple P-V-T system of a fluid/gas we have so far in our use of P-V or P-

T diagrams ignored the existence of different phases (eg. Solid, Liquid, Gas ). The full 

representation of this system’s behavior including all phases can be represented on a 

very complex P-V-T phase diagram as shown above but we recall that only two of the 

three variables are independent and we can represent the above phase diagram on P-V 

diagram at constant P or on a P-T diagram at constant V and these would represent 

slices through the 3D phase diagram shown above at the chosen value of P or V. 

Examples are shown in the above diagram but we can represent the information in 2D 

P-V or P-T diagrams by projections on the PV or PT axes. Such diagrams are shown 

below. 
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The P-V and P-T diagrams shown above are for fixed values of T and V respectively 

and show coexistence curves, lines of P and V which are boundaries between one 

phase and another. These boundaries are lines of co-existence and where the lines of 

coexistence meet is the triple point. The shaded area on the P-V diagram is a region of 

co-existence. Some of the features of the P-V diagram are that at higher volume the 

vapour phase appears. The solid phase exists at low volume where increase in 

pressure is not altering the volume reflecting the relative incompressibility of the solid 

phase. On the P-T diagram a few phase changes are indicated. At low temperature and 

pressure the solid may pass directly into the vapour phase without passing through the 

liquid phase by increasing temperature or lowering pressure. This is known as 

sublimation. 

There is a critical temperature above which compression produces no 

transition from a gas to a liquid or condensation. The gas and the vapor become 

indistinguishable at the critical point with the same density. Above the 

critical temperature we refer to a gas and below the critical temperature we refer to 

vapour. The liquid/vapour and solid/vapour co-existence regions are separated by the 

triple line on the P-V diagram. Along that line as the volume is reduced (at constant 

pressure) the ratio of vapour:liquid:solid varies and in general the amount of each 

phase may vary from 0 to 100%.  

Critical 

point 

evaporation 

sublimation 

Triple point 

P 

T 

Solid Liquid 

Vapour 

Phase co-existence 

melting critical isotherm 

L 

i 

q 

u 

i 

d 

L

i

q 

 

S

o

l 

Triple  

point 

S 

o 

l 

i 

d 

Liq-Vap 

Triple line 

P 

Sol-Vap 

Vapour 

V 

critical point 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 190 

We may now consider a simple process crossing the phase boundaries as represented 

in the diagram and on a T-V diagram shown below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The process begins with a cylinder containing a fixed mass of liquid water. The 

pressure transmitted by a frictionless piston is maintained constant. Heating now 

begins and the water heats up to a state B on the liquid/vapour coexistence boundary 

where vaporisation just begins. The heating continues taking the system isothermally 

to C where there is a small amount of vapour and a large quantity of the water is 

present as liquid. Adding more heat will continue the isothermal process through the 

liquid/vapour co-existence region and as we proceed from left to right to state D. The 

ratio of vapour to liquid in terms of mass will continue to grow with the majority of 

the water as vapour at D. Continuing with the heating the isothermal process is still 

followed until the phase boundary at E where the water is now almost completely in 

vapour form. Any further heating will raise the temperature of the vapour to state F. 

All along the line BE the quantity of vapour varies continuously from 0% to 100%. 
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Along this line while the total volume varies the pressure and temperature remain the 

same for all states and we need something else to define a state at an arbitrary point 

on BE, the two phase region. This property is something called “quality” and is 

defined as the mass fraction in the vapour state, ie. 

 

   
liqvap

vap

mm

m
x


  

 

The quality is related to the specific volume v as 

 

   vapliq xvv)x(v  1  

Or rewritten 

 

   
liqvap

liq

vv

vv
x




  

 

We can check that this is true by expressing the intensive properties v and x in terms 

of their extensive counterparts, V and M 
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V
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



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


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tot

tot

M

V
v   

 

To express the quality, x, we may use any mass specific quantity (u, h, s…). 

Refering to the diagram, if volume is on a linear scale then at point D for example 

   
BE

BD
x   
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The role of the Gibbs function in describing phase 

changes. 

Importantly, in the different phases the functions of state (U, S, F, G ) will have 

different values and vary in mathematically different ways and this we now consider 

in order to obtain some understanding of the process of phase change. 

Consider that the substance has a total mass M and it co-exists in two phases eg. 

vapour phase and liquid phase. We may then straightforwardly begin our analysis by 

asserting  

   ttanconsMMM  LV  

 

As noted we need to account for different Gibbs functions for each phase, G
V

 and G
L
 

We let g
V

 and g
L
 be the Gibbs functions per unit mass or specific Gibbs function for 

each phase. 

 

   LLVV gMgMG   

 

As we have already seen in our discussion of the Gibbs function, the condition for 

equilibrium at fixed P and T is that the Gibbs function must be minimized ie. dG = 0 

for any change including a change from vapour to liquid (condensation) or vice versa 

(evaporation). This is then the requirement that 

 

   )gMgM(ddG LLVV   

 

   LLVV dM)P,T(gdM)P,T(gdG   

 

We have conservation of mass 

 

 0 LV dMdMdM     LV dMdM   

 

Giving 
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     0 VLV dMggdG  for any dM
V

 

 

We then have the equilibrium condition for the co-existence of the phases that 

 

   )P,T(g)P,T(g LV     

 

along the liquid/vapour co-existence line in the P-V diagram and similarly 

 

   )P,T(g)P,T(g SL   

and 

   )P,T(g)P,T(g SV   

 

Along their respective co-existence curves, the melting and sublimation curves 

respectively. 

The g(T,P) are three different functions and the above condition is only true along the 

co-existence lines and furthermore at the triple point; 

 

   )P,T(g)P,T(g)P,T(g SLV   

 

At a unique value of T and P where the triple point is a uniquely defined reference 

state. This leads to the Gibbs phase rule for a simple substance eg PVT fluid that 

only three phases may coincide. 

 

First Order Phase Changes. 

Examples of first order phase changes are the liquid-vapour transition, the liquid-solid 

transition. Each of these transitions involves; 

 

(i) A change of density or specific volume. 

(ii) A Latent heat 

We may focus upon the vapour liquid transition using the P-T diagram as shown 

below 
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The line joining the triple point to the critical point is a co-existence curve and all 

along this curve we have the condition )P,T(g)P,T(g VL   so at nearby points on 

that curve 

   )dPP,dTT(g)dPP,dTT(g  VL  

 

We will find how dT and dP are related ie. we find the slope of the co-existence curve 

as follows; 

 

Using Taylor’s theorem to rewrite the above 
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Re-arrange so that dT and dP appear on different sides of the equation 
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We can now use previously discovered thermodynamic relations,  
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And 

 

  
TP

G
V 












    

TP

g
v 












  

 

To re-write 

 

     LVLV vvdPssdT   

 

And 

   
LV

LV

vv

ss

dT

dP




  

 

We can consider taking a fixed quantity of matter from the vapour state to the liquid 

state in a phase transition at the phase boundary. Such a transition will involve an 

increase in order with the accompanying decrease in entropy.  

Latent heats are normally given as positive quantities and in this case (vapour – 

liquid) we need s to be negative as order has increased and therefore 

 

   LV L-HeatLatentSTQR   

 

   LV lsTQR   

 

Where l VL is the latent heat of condensation (vapour to liquid) per unit mass and we 

need the minus sign to ensure that the change in entropy is negative. 

 

But we have just found an expression involving the entropy change in such a phase 

transition and 

    

  
T

ss
LVVL 


l
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)vv(TdT

dP

LV
LV




l
 

 

This is the Clausius Clapeyron Equation for the phase boundary 

 

While the Clausius Clapeyron equation holds for any phase boundary we may 

explore the vapour/liquid boundary or vaporization curve and obtain a simplified 

expression for this boundary where normally v
V

 >> v
L
 and it is a good approximation 

to treat the vapour as an ideal gas. Consider 1 mole and let lVL and v
V

 be the latent 

heat and volume per mole. 

    
P

RT
v V  

 

    
22 RT

P

P
RTdT

dP LVLV 

ll

 

We can take lVL  as a constant over a small temperature/pressure range 

 

2RT

dT

P

dP
LV  l  

Integrating 

 

    
const

RT
Pln  

1
LVl  

 

which we may rewrite as 
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



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
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00

111

TTRP

P
ln LVl  

Where const = 
0

0
T

Pln
LV 


l

 

Where P0 and T0 are any known pressure, temperature pair along the liquid-vapor 

curve. 
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Finally we obtain an alternative expression for the Clausius Clapeyron equation at the 

liquid/vapour boundary 

 

  


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This relates pressure and temperature along the liquid/vapour boundary ie. it gives the 

relation of the boiling point of the substance as pressure is varied where for example, 

in the case of water, when P = P0 is 1 atmosphere we have T = T0 = 373.15 K. If we 

use these values of T0 and P0 in the equation we can find the boiling point, T at any 

given pressure P. 

We note here that the same approximations may be made at the solid/vapour 

boundary or sublimation curve with an identical relation between pressure and 

temperature along this boundary 
const

RT
Pln  

1
VSl . If we note that at 

the triple point sublimation and vaporisation curves meet then we can equate the two 

curves to find the triple point pressure or temperature if the latent heats are known eg. 

At the triple point we require; 

 

  21
11
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C
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The Clausius Clapeyron equation relates to any phase change and we could have 

asked about the liquid-solid transition again involving an increase in order and 

therefore a decrease in entropy whence the same arguments give the Clausius 

Clapeyron equation at that boundary as 

 

)vv(TdT

dP

SL
SL




l
 

We cannot here use the approximations as the specific volumes are not very different 

and we cannot treat the liquid as an ideal gas. 
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Most materials contract upon freezing and v
S
 < v

L
 which involves a positive slope 

dT

dP
 on the PT diagram for the melting curve. We know, however, that water behaves 

in an odd fashion where it expands on freezing and v
S
 = 1.09 cm

3
g

-1
 < v

L
 = 1.00 cm

3
 

g
-1

. The latent heat of melting is 333 J g
-1

. With this data we may calculate the slope 

of the melting curve 

 

 1613

13

1

PaK1054.13KJcm54.13
gcm)09.100.1(15.273

Jg333

dT

dP 








  

 

 

 

 

 

 

 

 

 

 

 

 

 

Higher order phase changes. 

We need to ask now why these phase changes are called first order phase changes? 

We have been using the condition )P,T(g)P,T(g LV   in the previous discussion 

but we also have  
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In other words g is continuous at the transition but its first derivative is 

not continuous  but has a finite jump in value at the transition (s
V

 – s
L
  0 and v

V
 

– v
L
  0. 

We also have 
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The above sketch shows how we would expect g to behave as temperature is 

increased to above the boiling point. 

 

Other types of phase change exist where the first derivatives are continuous but the 

second derivatives are discontinuous and this would show up in discontinuities in 

measurable quantities such as  

cP (specific heats),  

 (thermal expansion coefficients),   

K (compressibility). 
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Which involve the second derivatives as seen below. 

 

Such transitions are called second order transitions eg. Ferromagnetic transitions, 

superfluid transition in 
4
He and specific heat anomolies are the signature of such 

transitions. 

The second derivative of g can be related to experimental quantities as follows; 
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All of these quantities will act as indicators of second order phase transitions when 

showing a discontinuity at the phase transition temperature, They also show some 

very interesting and singular behaviour. If the transition temperature is at TC then it is 

found that; 

 

   )TT(c CP     T  TC  

 

   )TT(K C     T  TC  

 

Other examples may be found, for example in a ferromagnet the magnetic moment 

behaves as 

 

 )TT( C M  and the susceptibility is   )TT( CM  

 

The quantities,  , ,  are known as CRITICAL EXPONENTS. 



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 201 

At a second order phase transition the symmetry of the system changes. The discovery 

of note is that the exponents  , ,  are independent of material and dependent on the 

dimensionality and nature of the symmetry change! 

 

eg. Ferromagnetic phase transition. 

 

 

 

 

 

 

This ubiquitous property of critical exponents is known as UNIVERSALITY. 

 

The research methods that have been developed in this area of condensed matter 

physics has since been taken over by elementary particle physicists and has aided 

advances in that very different field of study! 

T >TC 
T <TC 

Lower symmetry 
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9. THE THIRD LAW OF THERMODYNAMICS 

We have already seen how we may define a new state function called entropy and that 

entropy changes are measured by 
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And with  STQR    we have a further definition of heat capacity; 
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We may integrate either of these to find S as a function of T 

 

    dT
T

C
)T(S V

  

 

We could try to find S by making the integral into a definite integral 

 

 dT
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In other words we obtain S(T) to some arbitrary constant S(T0) and we could make the 

reference temperature T0 absolute zero. 

We may now look briefly at the third law of thermodynamics which attempts (among 

other things) to give information about the entropy at absolute zero, S(0).  

This is again, a law that doesn’t have a satisfying expression in mathematical terms 

and it is embodied in several statements. We can list these first and then try to 

examine what they are telling us. 
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(i) Macroscopic Statement. 

It is impossible to reduce the temperature of a macroscopic system to absolute 

zero in a finite number of steps or  processes. 

 

(ii) Nernst Statement or Nernst heat theorem (1906) 

The entropy difference between two distinct equilibrium states of a substance 

tends to zero at absolute zero.  

(The entropy of all equilibrium ststes tends to the same value at absolute zero!) 

 

The distinct equilibrium states correspond to states whose difference is defined by 

some difference in an external parameter. For the examples we have examined so far 

this could be an ideal gas and the pressure or a paramagnetic salt and the applied 

external field (P, B0 etc.). Nernst was the first to make some statement on the third 

law and he arrived at his statement by studying chemical reactions and electrolytic 

cells. He was measuring the change in enthalpy, H which determines the heat of 

reaction (exothermic, endothermic etc) and the change in Gibbs function, G, which 

determines in which direction a reaction will go.  

 

Recalling that G = H – TS we have at constant T 

 

    STHG    

 

As T  0 then we should expect G  H. His experiments confirmed this but also 

showed that G and H approached each other asymptotically. This implied that S  0 

as T  0 and Nernst’s statement can also be written; 

Near absolute zero all reactions in a system in internal equilibrium take place 

with no change in entropy. 

 

 (iii) Planck Statement (1911) 

The entropy of all perfect crystals is the same at absolute zero and may be taken 

as zero. 

By perfect crystal a perfect repeating lattice of atoms is envisaged. The Planck 

statement is nowadays extended to all systems in equilibrium as follows; 
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The entropy of all systems in internal equilibrium is the same at absolute zero 

and may be taken to be zero. 

By internal equilibrium we refer back to a previous discussion on the thermodynamic 

potentials where we find that for a given circumstance the appropriate potential is at a 

minimum eg. P and T being constant would require that G is at a minimum. An 

objection may be raised to this designation of zero for the entropy of all systems at 

absolute zero as it implies that the ground state is non-degenerate and  = 1 if we are 

to treat the statistical Boltzmann interpretation (S = kBln ) as a correct interpretation 

of the physical origin of entropy. For instance if a perfect crystal is composed of N 

atoms of nuclear spin I then in the absence of a magnetic field to lift the degeneracy 

the ground state has a degeneracy of (2I + 1) and the entropy according to Boltzmann 

should be  

 

S = NkBln(2I + 1)  

 

right down to absolute zero.  

We may get around this contradiction by noting that the individual components of the 

system are able to exchange energy with one another through spin-interaction of their 

dipole magnetic fields and this creates a magnetic spin wave whose ground state is 

non-degenerate at much lower temperatures where kBT << EInt . ie. As absolute zero is 

approached there is a collective state, the spin wave, into which all spins are 

incorporated, this state being non-degenerate (the specification of one spin effectively 

specifies all the others that have a phase relation to it). 

 

(iv) Simon Statement. 

The entropy component from each aspect of a system which is in internal 

thermodynamic equilibrium tends separately, to zero at absolute zero. 

By “aspect” Simon was referring to one of the subsystems of the components of the 

main system eg. the electron spin component to the entropy, the lattice component, 

the nuclear spin component…….Recalling that entropy is additive (it is an extensive 

property of a system) we require this to be the case for the total entropy to go to zero. 

   iTot S...SSS  21  
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Where the subscript I refers to a particular aspect. 

 

All of the above statements are equivalent ways of expressing the third law. 

 

We may also gain insight into the meaning of the third law by considering the 

Boltzmann’s statistical description of entropy; 

 

   lnkS B  

 

Where  is the number of distinct microscopic arrangements, of the entities, that give 

rise to the particular equilibrium macrostate whose entropy we are interested in. For 

all physical systems, as T  0 the system falls into its ground state, a unique 

lowest energy state. As this happens   1 and this means that S  0. 

 

The third law has important consequences that may be experimentally observed 

because it requires that S tends to zero at absolute zero (Nernst statement). Any 

physical quantity whose value depends on the change in entropy will therefore be 

affected by the third law at very low temperatures and we now look at a few such 

quantities; 

 

a) Specific Heat Capacity tends to zero as T  0. 

 

Using our definitions of heat capacity; 
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Clearly lnT  - as T  0 so it is essential that CV  0 in order that S  0. An 

identical argument applies to CP 

For most solids it is found that at low temperature 

  3bTaTCP   



Thermal & Kinetic Physics: Lecture Notes  © Kevin Donovan 
 

 206 

 

Where the first term is due to an electron contribution (heat absorption serving to raise 

the average energy of the electron distribution) and the second to a lattice contribution 

(heat absorption contributing to the atomic vibrations of the solid). 

 

b) Thermal expansion goes to zero at low temperatures. 

 

Taking the definition of thermal expansion 
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This can be re-written in terms of entropy using a Maxwell relation 
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giving 
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The Nernst formulation tells us that entropy change S  0 as T  0 therefore 

implying that 0  as T  0. 

 

c) Curies Law breaks down at low temperature. 

 

We saw earlier for paramagnets the Curie law which states  

    
T

C
  
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The third law carries the implication that 0
0
















T
B

S
 at low temperatures. To show 

that the two are incompatible assume that Curies law holds right down to absolute 

zero 

   0
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Using a Maxwell relation we can obtain a link between M and 
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Putting these together we have 
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As T  0 the S associated with B0 must vanish by the Nernst statement which the 

above equation does not thereby implying that the use of the Curie law as 0T  is 

mistaken and rather we should have 
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Therefore we have deduced from the third law that the Curie law, 
T

C
  , cannot 

hold down to T = 0 
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d) Ideal gases are a fiction at T = 0 

 

We have used the ideal monatomic gas over and over to act as the paradigm system 

allowing us to obtain tractable and very useful results. However we have already 

destroyed one of those results at absolute zero namely the finding that RCC VP   

for 1 mole of gas. We have seen that both heat capacities go to zero negating this 

result. Further problems arise for the ideal gas when we consider the entropy of an 

ideal gas 

   constVlnRTlnCS V   

As T  0, using this equation, we find S = - clearly in contradiction to the third law. 

 

e) First order phase changes 

In deriving the Clausius Clapeyron equation for the coexistence line of two phases we 

found  

v

s

vv
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dP

LV
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
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


  

As T  0, according to the Nernst statement, s  0. This implies that as T  0, 

0
dT

dP
ie. for a coexistence curve that extends to T = 0 the slope must vanish at T = 

0. 
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The final implication of the third law is that  

 

f) It is impossible to reach absolute zero. 

A physical argument can be given for the statement that absolute zero cannot be 

reached in a finite number of steps. We do this by considering the paramagnetic 

cooling shown in the diagrams below. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The entropy vs temperature curves with and without an applied external field is 

shown with the applied field curve having the lower entropy (or higher order due to 

electron spin alignment). The lower diagram demonstrates that even as in the upper 

diagram we approach T = 0 after five steps, by blowing up the near origin region in 

the lower curve we see that the number of steps required is not reduced and that we 

may continue this argument ad infinitum. All that is being relied upon here is the form 

of S vs T with both going through the origin at S = T = 0. This is not in fact necessary 

to this argument as long as the Nernst statement S  0 as T  0 is satisfied. 

B0 
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There exist lengthy formal proofs of the equivalence of the Nernst and finite steps 

(macroscopic) forms of the statement but the above consideration is sufficient to see 

that they are equivalent requirements. 

 

We can conclude by looking at the Carnot engine to see if it has anything to say about 

the third law. We recall the efficiency of the Carnot engine 

 

   
1

21
T

T
C   

 

If the temperature of the lower reservoir is absolute zero the efficiency of the Carnot 

engine is 1 or 100%. In other words we would get perfect conversion of heat into 

work contrary to the Kelvin-Planck statement of the second law. We could ask then  

 

Is the Third Law yet another statement of the Second Law 

or is it a separate law in its own right? 

 

The third law is saved because it is not sensible to consider the low temperature 

reservoir to be at 0 K as the Carnot cycle requires that you perform an isothermal 

process at this temperature. However, once a system is at absolute zero it’s 

thermodynamic state cannot be changed without warming it! 

The conclusion must be that the Third Law continues to exist 

as a law of thermodynamics in it’s own right. 

 

 


