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1 Some useful algebraic structures.

1.1 Groups.

A group is a set of elements G together with an operation • that combines any two

elements and gives another element of the group.

• Closure: ∀ a, b ∈ G, a • b ∈ G.

• Associativity: ∀ a, b, c ∈ G, (a • b) • c = a • (b • c).

• Existence of the identity element: ∃ e ∈ G such that, ∀ a ∈ G, a • e = e • a = a

• Existence of the inverse: ∀ a ∈ G , ∃ b ∈ G such that a • b = b • a = e.

The concept of group is particularly important in physics because the set of symmetries

of a physical system is a group. In this case the product of two elements consists just in

performing the two symmetry operation in sequence: the result is a possibly new operation

that leaves the system invariant.

1.1.1 Examples and exercises.

• The set of integer numbers Z (that is . . . ,−2,−1, 0, 1, 2, . . .), together with the

standard addition form a group (Z,+)

This group enjoys an additional property, that is the operation is commutative: ∀ a, b ∈ Z

we have a+ b = b+ a. This type of groups is called Abelian.

• Consider an equilateral triangle: a rotation by 120 degrees (2π/3 radians) around

the center of the triangle leaves the object invariant.

Notice that these operations are not the only symmetries of the triangle! We can perform

also reflection along the three altitudes and leave the triangle unchanged. The group

generated by all symmetries is called D3 (it’s one of the Dihedral groups). This group

contains a finite number of elements and is not Abelian (non-Abelian). See exercise below.

• Consider a sphere: any rotation around an axis passing through the origin of the

sphere leaves the sphere unchanged. The set of all these rotations forms a group

that we will analyze in some detail in this course.

This group contains an infinite numbers of elements, since the angle of the rotation is a

continuous parameter. As we will see this group is non-Abelian.
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Exercise: Consider the group D3. This group is generated by the following two

operations:
A

B

C

R1

A

B

C

S0

A

BC

A

CB

⇒

⇒

1. Compose these two symmetries in all possible ways and write down all elements of

D3. How many elements are contained in D3 ?

2. Write down all possible products between two elements in D3 and prove that the

group is non-Abelian.

1.2 Vector spaces.

A vector space is a set of elements that can be summed and rescaled: it represents an

abstraction of the usual Euclidean space. To be precise, a real vector space V is an Abelian

group with respects to the addition; moreover each element of v ∈ V can be multiplied
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(rescaled) by a real number a and av ∈ V . This scalar multiplication must have the

following properties:

• Distributivity with respect to the vector addition: ∀ a ∈ R and ∀ v, w ∈ V we have

a(v + w) = av + aw;

• Distributivity with respect to the real number addition: ∀ a, b ∈ R and ∀ v ∈ V

we have (a+ b)v = av + bv;

• ∀ a, b ∈ R and ∀ v ∈ V we have a(bv) = (ab)v;

• Multiplication by the identity and zero: ∀ v ∈ V we have 1v = v and 0v = 0.

A complex vector space is defined in a similar way just by allowing rescaling of the vectors

with complex, instead of real numbers. Then in the axioms above a, b will belong to C.

Vector spaces play a central role in physics. In classical mechanics the position of a

point-particle is specified by a vector in the Euclidean space. In Quantum mechanics the

state of a system is specified by the wavefunction which, as we will see, is an element in

a complex vector space.

Let me now recall the concept of linearly independent vectors

• A set of vectors {v1, v2, . . . , vm} is linearly independent if a1v1 + . . . + amvm = 0

(with ai ∈ R for real vector spaces, while ai ∈ C for complex spaces) implies that

a1 = . . . = am = 0.

• If it exists a maximum number of linearly independent vectors n, then n is the

dimension of the vector space. A set of n linearly independent vectors is called

basis.

This implies that a vector space V of dimension n can be “represented”1 as the Euclidean

space (Rn for real vector spaces and Cn for complex ones). Consider a basis {v1, v2, . . . , vn}
for this space; then we have the following

Theorem: each vector v ∈ V has a unique decomposition in terms of {v1, v2, . . . , vn}

v = a1v1 + . . .+ anvn . (1.1)

Proof “by contradiction”. Suppose that there are two different such decompositions:

v =
∑n

i=1 aivi and v =
∑n

i=1 bivi with ai 6= bi at least for one value of i. Then we can

take the difference between these two decompositions and get: 0 =
∑n

i=1(ai − bi)vi. This

contradicts the hypothesis that {v1, v2, . . . , vn} forms a basis. The n numbers ai are called

coordinates of v in the basis {v1, v2, . . . , vn}.
1We will see next week what this means exactly.
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1.2.1 Examples and exercises.

• The 2-dimensional Euclidean space is the standard example of a vector space.

y

x

The 2-dimensional Euclidean space: the elements of this

real vector space are arrows on a plane whose length can

be rescaled and that can be summed in the usual way.

Exercises:

1) Consider the set of polynomial with real coefficients of degree 2: 3x+4 and x2 +
√

2

are examples of such polynomials and
∑2

i=0 aix
i ≡ a2x

2 + a1x + a0 with ai ∈ R is the

most general element.

• Show that this set forms a vector space with the standard addition between polyno-

mial and with the scalar multiplication with any real number b defined as: b(
∑2

i=0 aix
i) =

∑2
i=0(bai)x

i.

• What is the dimension of this vector space ?

2) Consider the following pairs of vectors in C3:

a) v =





1

2

3



 , w =





4

5

6



 ; (1.2)

b) v =





1

1

2



 , w =





2

2

4



 ; (1.3)

c) v =





1

i

−i



 , w =





i

−1

1



 . (1.4)

Check whether these pairs of vectors linearly are linearly independent.

1.3 Scalar products and Hilbert Spaces.

We are interested in vector spaces that have an additional structure: a scalar product

(sometimes I will use the equivalent denomination “inner product”). The inner product
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is a bilinear map from V ×V → R (V ×V → C for complex vector spaces). Let me focus

on the complex case:

• linearity: ∀ ai ∈ C and ∀ w, vi ∈ V we have (w, a1v1 + a2v2) = a1(w, v1) + a2(w, v2)

and (a1v1 + a2v2, w) = ā1(v1, w) + ā2(v2, w)

• conjugation symmetry: ∀ w, v ∈ V we have (w, v) = (v, w).

Notice that this last property implies that (v, v) ∈ R ∀ v ∈ V . Then it makes sense to

require that

• ∀ v 6= 0 in V we have (v, v) > 0

When this additional property is satisfied the scalar product is said to be positive definite.

The scalar product of a vector with itself is called norm: ||v||2 ≡ (v, v). In our applications

to Quantum Mechanics we will be focusing on positive definite scalar products. On the

contrary, for instance in special relativity one deals with a vector space with a non-positive

definite scalar product.

Some useful definitions and properties:

• If two vectors v1, v2 have vanishing scalar product (v1, v2) = 0, then they are said

to be orthogonal.

• An orthogonal basis for V is a basis {v1, v2, . . .} for which (vi, vj) = 0 ∀i 6= j. If in

addition we have (vi, vi) = 1 ∀i, then the basis is called orthonormal. In symbols

we have (vi, vj) = δij, where δij is the Kronecker delta: δij = 1 if i = j and δij = 0

otherwise.

• The decomposition (1.1) of any vector in terms of an orthonormal basis is given by

v =
∑

(vi, v)vi ⇒ ai = (vi, v) . (1.5)

Theorem (Schwarz inequality). Take any two vectors v1, v2 of a Hilbert space. Then

we have

|(v1, v2)|2 ≤ ||v1||2||v2||2 . (1.6)

Proof: Consider the vector w = v1 + av2, where a is an arbitrary complex (real) number.

Then we have ||w||2 ≥ 0, which implies

0 ≤ ||w||2 = (v1, v1) + |a|2(v2, v2) + a(v1, v2) + ā(v2, v1) . (1.7)

Now we can take

a = −(v2, v1)

(v2, v2)
. (1.8)
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In this case the last two terms of (1.7) become equal and opposite to the second one.

Then we can immediately see that (1.7) reduces to (1.6).

Roughly speaking, a Hilbert space is a vector space with a positive definite inner

product. If the vector space is infinite dimensional, we also require that:

1. The norm of each vector is finite: ∀ v we have (v, v) <∞.

2. Any Cauchy sequence2 of vectors has a limit vector in V .

3. The space has a countable orthonormal basis3.

1.3.1 Examples and exercises.

• Consider the infinite dimensional generalization of the vectors in C3, that is the vec-

tors v are just infinite arrays of complex numbers: v = (v1, v2, v3, v4, . . .). The scalar

product between two vectors of this kind is defined to be (w, v) =
∑∞

k=1 w̄kvk. Thus

in order to satisfy property 1, we focus only on the vectors for which
∑∞

k=1 |v|2k <∞.

One can show that this set of vectors forms a Hilbert space (that is property 2 and

3 are satisfied). This Hilbert space is usually named l2.

Exercise: Consider an set {v1, v2, . . .} of orthogonal vectors. Show that these

vectors are linearly independent.

2 Linear maps.

2.1 Functions between two sets.

A function between two sets (f : A → B) is a map that associates each element of the

first set (A) one element of the second set (B). In a formal language: ∀ a ∈ A ∃! b ∈ B

such that f(a) = b. Some definitions:

• A function f : A → B is said surjective (or “onto”) if all elements of B are images

of some element in A: ∀ b ∈ B ∃a ∈ A such that f(a) = b

• A function f : A→ B is said injective if any two elements in A have different images

in B: ∀ a1, a2 ∈ A f(a1) = f(a2) implies a1 = a2.

• a function is bijective if it is both surjective and injective.

2A sequence of vectors vk with k = 1, 2, . . . is Cauchy if ||vm − vn||2 becomes arbitrary small when

m,n are big. In formal terms: ∀ ǫ > 0 ∃ k ∈ N such that ∀ m,n > k we have ||vm − vn||2 < ǫ.
3Hilbert spaces satisfying this requirement are often called separable. Mathematicians consider also

non-separable Hilbert spaces which satisfy the first two requirements, but not the last one; these non-

separable spaces do not arise in Quantum Mechanics and so we will ignore them.
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2.1.1 Examples.

α

γ

β

A B

1

2

α

γ

β

A B

1

2

3

This is a function. This is not a function

α

γ

β

A B

1

2

3

This function is bijective.

α

γ

β

A B

1

2

This is not a function

2.2 Linear functionals and Dirac’s notation.

From now on we will very often indicate the vectors of an abstract vector space by using

Dirac’s notation |ψ〉 (ket vector). Depending on the type of the vector space V one is

considering |v〉 can be a n-tuple of number, a polynomial or an element of l2 (see the

example in the previous Section). This notation is useful when one considers the dual

space of linear functionals.

A linear functional is a function χ between a real (complex) vector space V and the

real (complex) numbers which has the following property

• ∀ |ψ1〉, |ψ2〉 ∈ V and ∀ a, b ∈ R (C) we have χ(a|ψ1〉+b|ψ2〉) = aχ(|ψ1〉)+bχ(|ψ2〉).

The dual space V ∗ is the set of all possible linear functionals. In the Dirac’s notation each

linear functional is represented by a 〈χ| (bra vector).

To every ket corresponds a bra. In a vector space with a scalar product, it is easy to

define a function that maps the vectors of V into elements of V ∗. For each |φ〉 ∈ V consider

the scalar product between |φ〉 and any other element of V . This is a linear functional
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mapping V in R (C) that is completely specified by |φ〉. Thus we can represent this linear

functional with 〈φ|
(|φ〉, |ψ〉) ≡ 〈φ|ψ〉 . (2.1)

From now on we will often indicate the scalar products between two vectors by using

Dirac’s notation, that is by using the left hand side of Eq. (2.1). Let us recall the main

properties of the scalar product

〈φ|χ〉 = 〈χ|φ〉 , (2.2)

〈φ|a1χ1 + a2χ2〉 = a1〈φ|χ1〉 + a2〈φ|χ2〉 ,
〈a1φ1 + a2φ2|χ〉 = ā1〈φ1|χ〉 + ā2〈φ2|χ〉 ,

〈χ|χ〉 > 0 , ∀ |χ〉 6= 0 .

The correspondence between ket and bra vectors is antilinear: if the bra vectors cor-

responding to |ψ1〉 and |ψ2〉 are 〈ψ1| and 〈ψ2|, then the bra vector corresponding to

a1|ψ1〉 + a2|ψ2〉 is ā1〈ψ1| + ā2〈ψ2|
a1|ψ1〉 + a2|ψ2〉 ⇒ ā1〈ψ1| + ā2〈ψ2| . (2.3)

Question: Is there a ket corresponding to every bra?

The answer is yes for finite dimensional vector spaces with a scalar product, while for

infinite dimensional spaces the situation is subtler.

Let us first focus on the simple finite dimensional case. We can choose an orthonormal

basis {|ψ1〉, |ψ2〉, . . . , |ψn〉} which means that we have 〈ψj |ψi〉 = δij. For each linear

functional 〈χ| we can build a vector as follows
n
∑

i=1

〈χ|ψi〉 |ψi〉 ≡ |χ〉 . (2.4)

Notice that the bra associated to ket just defined in (2.4) is the original linear functional

〈χ|, as it can be seen by using (2.1). Proof: take any vector |φ〉, this can be decomposed

in a unique way on the basis |ψi〉 (|φ〉 =
∑

ci|ψi〉); then the bra associated to |χ〉 acts as

follow

(|χ〉, |φ〉) =
n
∑

i=1

〈χ|ψi〉 (|ψi〉, |φ〉) =
n
∑

i,j=1

〈χ|ψi〉δijcj = 〈χ|φ〉 . (2.5)

Now the question is: what can go wrong in the case of an infinite dimensional vector

space V ? In this case the sum in (2.4) becomes an infinite series and the problem is

that this series might not have a limit in V even if it is a combination of vectors in V .

It is possible to construct an explicit example of such a situation in the case V is not a

Hilbert space and in particular does not satisfy the second requirement in the previous

notes. This example is important for our applications to Quantum Mechanics (see below

the example about Dirac’s delta for some more details).
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2.2.1 Examples and exercises.

• Bra for finite dimensional Hilbert spaces.

Consider the space C3: the element of this space are just column vectors with a triplet of

complex numbers (see for instance 1.2). We use the standard scalar product

(|v〉, |w〉) ≡ v̄1w1 + v̄2w2 + v̄3w3 =
(

v̄1 v̄2 v̄3

)





w1

w2

w3



 . (2.6)

Then, by using Eq. (2.1), it is clear that the bra corresponding to the vector |v〉 is simply

the row-vector
(

v̄1 v̄2 v̄3

)

.

• Dirac’s delta.

Consider the space of the following “nice” function f : R → C: f is infinitely differentiable

and goes to zero very quickly4 as |x| → ∞. This set of functions form a complex vector

space5 Vf with scalar product defined as

∫ ∞

−∞
ḡ(x)f(x)dx . (2.7)

Consider the mapping f(x) → f(x = 0). This is a linear functional6 that we will call 〈δ0|.
We can represent this functional by using the scalar product (2.7) and the Dirac’s delta

〈δ0|f〉 ≡
∫ ∞

−∞
δ(x)f(x)dx = f(0) . (2.8)

Notice that there is no standard function g for which
∫∞
−∞ ḡ(x)f(x) = f(0) for any f(x) ∈

Vf . This shows that this linear functional cannot be represented by the scalar product of

an element in V , but requires a new object (the Dirac’s delta in this case).

Exercise

• Prove the statement: Vf is a vector space.

• Prove the statement: 〈δ0| is a linear functional.

* Show explicitly that Vf is not a Hilbert space.

4∀ n,m = 1, 2, . . . we have |xndmf/dxm| → 0 as |x| → ∞.
5See the exercise below.
6See the exercise below.
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2.3 Linear operators.

Consider two vector spaces V and W (they are not necessarily different, we can have

V = W ). A linear operator is a function A from V to W satisfying

• ∀|χi〉 ∈ V we have A(|a1χ1 + a2χ2〉) = a1A(|χ1〉) + a2A(|χ2〉) ∈ V ′

In the case V = W we can define the product of two operators in a simple way just by

acting on the vectors in an ordered way:

∀ χ ∈ V AB(|χ〉) ≡ A
(

B(|χ〉)
)

.

Any real (complex) finite dimensional vector space V is isomorphic to Rn (Cn). This

means that there is a injective linear map between V and Rn (or Cn).

In order to see this let us take a basis for V : {|v1〉, . . . , |vn〉}. Then any vector |v〉 ∈ V

can be decomposed along this basis

|v〉 =
∑

i

ci|vi〉 ⇒











c1

c2

...

cn











↔ |v〉 , (2.9)

where ci are the coordinates7. Thus we can associate to any |v〉 ∈ V a unique n-tuple

of numbers; vice-versa to any n-tuple of numbers we can associate a vector simply be

reading (2.9) in the opposite sense. Thus the map is injective. In order to complete the

proof that this is an isomorphism between V and Rn (or Cn), see the first exercise below.

2.3.1 Examples and exercises.

• In the case of finite dimensional vector spaces, any linear operator A : V → V ′ can

be represented by a matrix.

In order to see this let us take a basis for V {|v1〉, . . . , |vn〉} and one forW {|w1〉, . . . , |wm〉}.
Then we have

A|v〉 =

n
∑

i=1

ciA|vi〉 . (2.10)

Now let us focus on each A|vi〉: these vectors belong to W so they can be decomposed

along the |wj〉 basis

A|vi〉 =
m
∑

j=1

|wj〉aj
i ⇒ A|v〉 =

n
∑

i=1

m
∑

j=1

aj
ic

i |wj〉 . (2.11)

7As a notation, from now on we will use upper indices for the vector coordinates; you will see why

this is convenient.
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By using the isomorphism introduced above, we can

- represent the kets |v〉 ∈ V as column vectors with n numbers,

- represent the kets |W 〉 ∈W as column vectors with m numbers,

- represent the linear operator A as the matrix aj
i, where j is the row index and i is

the column index.

• A projector is a linear operator P from a vector space V to itself (P : V → V )

such that P 2 = P . This definition generalized to an abstract vector space the idea

of projection in the standard Euclidean space. Dirac’s notation provides a simple

way to write projectors in a simple way. Consider a vector with norm 1: |v〉 and

consider also the associated bra 〈v|. We can define a projector Pv ≡ |v〉〈v| which

acts as follow

∀ |w〉 ∈ V Pv|w〉 ≡ (〈v|w〉) |v〉 . (2.12)

This is a projector since P 2
v = |v〉〈v|v〉〈v| = Pv. If you take V to be, for instance,

the standard 2-dimensional vector space and |v〉 to be the versor along the x-axis,

then you can see that (2.12) is indeed the projection on this axis.

It is straightforward to generalize (2.12) when you deal with more vectors: if you have a

set of orthonormal vectors {|v1〉, . . . , |vm〉}, then you can define a projector on the plane

generated by these vectors as follow

Pm =
m
∑

i=1

|vi〉〈vi| . (2.13)

Exercise

1) Prove that the map in (2.9) is linear.

2) Consider a set of orthonormal vectors |v1〉, . . . that forms a basis for V . Prove that

the associated projector, as in (2.13), is the identity operator: P = 1.

3) Consider a finite dimensional complex Hilbert space and the isomorphism (2.9) with

Cn. Derive how the scalar product between two vectors |v〉 and |w〉 is written in

terms of their coordinates.
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2.3.2 Action of a linear operator on a bra.

So far we have discussed the action of linear operators on the kets in a vector space V .

Let us focus on operators from V to V . By using the scalar product, it is simple to define

an action also on the linear functionals (that is the bras). Consider a linear operator A,

then for any bra 〈φ| we can associate a new bra 〈φ′| defined as follow

∀ |ψ〉 ∈ V 〈φ′|ψ〉 ≡ 〈φ| (A|ψ〉) = 〈φ|A|ψ〉 . (2.14)

The correspondence 〈φ| → 〈φ′| ≡ 〈φ|A is linear:

(a1〈φ1| + a2〈φ2|)A = a1〈φ1|A+ a2〈φ2|A . (2.15)

2.3.3 Examples.

• We have seen that in the case of a finite dimensional Hilbert space, linear operators

can be represented by standard matrices. The action of an operator on a vector

is then represented by the standard left multiplication of the corresponding matrix

on the vector coordinates A|v〉 → ∑

i a
j
ic

i. The action on the bras defined above

corresponds to right matrix multiplication: 〈v|A→∑

j c̄ja
j
i.

2.4 Hermitian and self-Adjoint operators.

Let us consider an operator A defined in a subvector space W ⊆ V (of course we might

have W = V ). If for any pair of vectors |v1〉, |v2〉 ∈ W we have that 〈Av1|v2〉 = 〈v1|Av2〉
then A is a Hermitian operator.

By using the previous paragraph A defines also a linear operator on the bras. Now, by

using the bra/ket relation, we can define a new operator A† on the kets (A† is called the

adjoint of A): ∀ |ψ〉 ∈ V we define A†|ψ〉 as the ket corresponding8 to the linear functional

〈ψ|A acting onW . Even if this definition might seem abstract we will see that it is just the

generalization of the standard Hermitian conjugation for (possibly infinite dimensional)

Hilbert spaces. Let me summarize the main properties of the Adjoint operation:

(A+B)† = A† +B† , (2.16)

∀a ∈ C ⇒ (aA)† = āA† , (2.17)

(AB)† = B†A† . (2.18)

The first two properties follow from the linearity of A and B on the bra and from the

antilinearity of the bra/ket relation. Eq. (2.18)

8There is a subtlety: there might be no corresponding ket; in this case we just eliminate |ψ〉 from the

domain of A†.
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An operator is Hermitian if A† = A. [Subtlety: notice that in this definition I have

been vague on the domain of definition of A and A†. In the case of infinite dimensional

spaces the domains of the two operators might be different, even if the A† and A are equal

on the common part of the two domains. A self-adjoint operator is an Hermitian operator

for which the domains of A and A† are also equal. Except for the example below, we will

use the words “Hermitean” and “self-adjoint” as equivalent and asssume that there are

no subtelties with the definition of the domain of the operators.].

2.4.1 Examples and exercises.

• Consider a finite dimensional Hilbert space V . We know that is isomorphic to Cn

and that each linear operator A in V is mapped in a matrix aj
i in Cn. Then

Hermitian operators just correspond to Hermitian matrices. Moreover there are

no subtleties with the definitions of the domains (as they always coincide with the

whole vector space); then the operators corresponding to Hermitian matrices are

also self-adjoint.

• In the case of infinite dimensional vector spaces, one has to pay some attention to

the domain where the linear operator are defined. For instance, consider the space

V of smooth functions (ψ(x)) in R which are square integrable and the operator

position (x): it is not guaranteed that xψ(x) is an element of V and so x is not

defined over the whole V . Example: ψ(x) = A x
1+x2 .

• A Hermitian, but not self-adjoint operator. Consider the wavefunctions you have

seen in the problem of the infinite potential well

|n〉 ≡ sin
(nπx

L

)

, with x ∈ [0, L] .

Consider the vector space W generated by any finite linear combination of these

functions with the standard scalar product
∫ L

0
ḡ(x) f(x) dx. Then the operator

P = −i d
dx

is Hermitian, but cannot be extended to be a self-adjoint operator.

Exercise

• Prove that 〈φ|A†|ψ〉 = 〈ψ|A|φ〉 (of course suppose that |φ〉 belongs to the domains

of A and |ψ〉 to the domain of A†).
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3 Eigenvalues and Eigenvectors.

3.1 Definition.

Let complex V be a vector space. Consider a linear operator A from V to itself A : V → V .

A vector |v〉 ∈ V that satisfy

A|v〉 = λ|v〉, (3.1)

for some complex number λ is called eigenvector and λ is called eigenvalue9. Of course,

since A is linear, one can rescale |v〉 by an arbitrary number (as in |v′〉 = c|v〉) and build a

new eigenvector (|v′〉) with the same eigenvalue. It is also possible that a vector |w〉, that

is linearly independent from |v〉, is an eigenvector with the same eigenvalue (that is we

might have A|w〉 = λ|w〉). It is straightforward to prove that the set of all eigenvectors

with the same eigenvalue form a vector space (called eigenspace) that is a subspace of V .

[Revision from MT2/MT3]. If V is a finite dimensional vector space, we have a

clear algorithm to find the eigenvalues and the eigenvectors.

• Any finite dimensional vector space V is isomorphic to Cn and any linear operator

from V to itself can be represented as a matrix aj
i acting on Cn.

• The eigenvalues are the solutions of the following equation: det
(

aj
i − λδj

i

)

= 0

(this is a polynomial equation whose degree is equal to the dimension of the vector

space).

• For each eigenvalue we can find the corresponding eigenvector by solving the follow-

ing set of n linear equations

n
∑

i=1

aj
ic

i − λcj = 0 , j = 1, 2, . . . , n . (3.2)

Notice that eigenvectors with different eigenvalues form a set of linearly independent

vectors.

3.1.1 Examples and exercises.

Exercise. Consider the following matrices as operators form C2 to itself

M =

(

1 −i
0 1

)

, σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i
i 0

)

, σ3 =

(

1 0

0 −1

)

. (3.3)

Find all possible eigenvectors and the corresponding eigenvalues for M and the σi’s.

9The trivial solution |v〉 = 0 is neglected and does not count as an eigenvector.
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3.2 Eigenvectors of self-adjoint operators.

Let us start from the case of finite dimensional vector spaces that you studied in MT2/MT3.

In this case, self-adjoint operators can be represented simply as Hermitian matrices. We

have the following theorem.

[T1] The eigenvectors of an Hermitian matrix A form a complete basis for Cn

and the corresponding eigenvalues are always real.

(Sketch of a) Proof: the eigenvalue equation is a polynomial equation (of degree n) then

it has at least one complex root (the “Fundamental theorem of algebra”). This means

that there is at least one eigenvector |v1〉. Since A is Hermitian, then A maps the space

orthogonal to |v1〉 (V ⊥
1 ) into itself: if (|v1〉, |w〉) = 0 then (|v1〉, A|w〉) = (A|v1〉, |w〉) =

λ1(|v1〉, |w〉) = 0. Then A restricted to V ⊥
1 is just a (n − 1) × (n − 1) matrix and

we can repeat the same steps recursively to find n eigenvalues and eigenvectors. Since

the eigenvectors are linearly independent, they form a basis. Notice that the basis just

constructed is an orthogonal basis. Of course we are free to rescale the eigenvectors as we

want and (3.1) is always satisfied, thus we can make the eigenvector basis orthonormal.

So by using an exercise given in week 2, we can state the completeness of the eigenvectors

|vi〉 of a Hermitian matrix in the following way:

∑

i

|vi〉〈vi| = 1 , (3.4)

Finally notice that the eigenvalues of A are real

λ1||v1||2 = 〈v1, |Av1〉 = 〈Av1|, v1〉 = λ̄1||v1||2 . (3.5)

Now the question is what happens if we deal with self-adjoint operators defined on

an infinite dimensional Hilbert space. As you can see from the example below this nice

theorem cannot hold exactly in the same form. We can consider a weaker version of (3.1):

look for a bra 〈vλ| such that

〈vλ|A|w〉 = λ〈vλ|w〉 , (3.6)

for all |w〉 in the domain of A (λ is real, as in (3.5)). As we have seen in the example

2.2.1 on the Dirac’s delta not all bras satisfying (3.6) do have a corresponding ket. Thus

for a self-adjoint operator we have two cases:

• the possible eigenvalues satisfying (3.1) form a discrete set;

• the “eigenvalues” satisfying (3.6), but not (3.1), form a a continuous set.
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It turns out that, even if the bras with continuous eigenvalues do not have corresponding

ket, their integral over a finite region of values of λ does. In particular if c(λ) is a

smooth function that is non-zero only in a finite region of the possible λ’s, then the linear

functional
∫

dλc(λ)〈vλ| has a corresponding vector that we will indicate with
∫

dλc(λ)|vλ〉.
With an abuse of notation, physicists commonly use also the symbol |vλ〉, even if there

is no |vλ〉 corresponding to the bra in (3.6)! The idea is that this object yields standard

vectors when integrated.

At this point we can state the infinite dimensional analogue of the theorem [T1]. Con-

sider a self-adjoint operator: the eigenvectors |vi〉 corresponding to discrete eigenvalues

together with those related to continues eigenvalues (|vλ〉) form a complete set

∑

i

|vi〉〈vi| +
∫

dλ|vλ〉〈vλ| = 1 . (3.7)

The orthonormality condition reads as follow

〈vi|vj〉 = δij , 〈vλ1 |vλ2〉 = δ(λ1 − λ2) . (3.8)

3.2.1 Examples and exercises.

• Consider the momentum operator in quantum mechanics −i~ d
dx

that act on differ-

entiable, square integrable (wave)functions. There is no solution to the eigenvector

equation

−i~dψ(x)

dx
= λψ(x) . (3.9)

It is clear that the only possibility is to choose ψ(x) = e
iλx

~ , but this function is not

square integrable regardless whether λ is real or imaginary.

4 The postulates of quantum mechanics

1 At a fixed time t0, the state of a physical system is defined by a vector |ψ〉 in a

Hilbert space H.

2 Every physical (measurable) quantity A is described by a self-adjoint operator A

(also called “observable”).

3 The result of a measurement of the physical quantity A is always one the eigenvalues

of the corresponding operator A.

4 The probability of finding the eigenvalue a in a measurement is ||Pa|ψ〉||2, where |ψ〉
has unit norm and Pa is the projector on the space of eigenvectors of eigenvalue a.



Rodolfo Russo - QMS - Notes 17

5 After a measurement of A yielding the value a (an eigenvalue of A), then the state

of the system change from |ψ〉 to Pa|ψ〉/||Pa|ψ〉||.

6 The time evolution of the system is described

H|ψ(t)〉 = i~
d

dt
|ψ(t)〉 , (4.1)

where H is the observable associated to the energy of the system (Hamiltonian).

4.0.2 Examples and exercises.

Consider the operator defined on C3 and the ket |φ〉:

A =





0 2 0

2 0 0

0 0 2



 , |φ〉 =
1√
2





i

0

1



 . (4.2)

The operator A has the following three eigenvectors:

|ψ1〉 =
1√
2





1

1

0



 , |ψ2〉 =
1√
2





1

−1

0



 , |ψ3〉 =





0

0

1



 . (4.3)

with eigenvalues 2, −2 and 2 respectively. Thus the projectors on the two eigenspaces are

P(2) = |ψ2〉〈ψ2| + |ψ3〉〈ψ3| , P(−2) = |ψ1〉〈ψ1| . (4.4)

If the state of our physical system is described by |φ〉, then I can compute the probabilities

of measuring ±2 by decomposing |φ〉 on the basis (4.3)

|φ〉 = P(2)|φ〉 + P(−2)|φ〉 =

3
∑

i=1

〈ψi|φ〉|ψi〉 . (4.5)

The probability of finding −2 is ||P(−2)|φ〉||2 = 1/4, while that for 2 is ||P(2)|φ〉||2 = 3/4.

Exercise. Consider the Hilbert space C2 and the observable σ1 in (3.3). If a quantum

mechanical system is described by the state

|ψ〉 =

(

1

2

)

, (4.6)

• What is the probability, in a physical measure, of finding as a result the first and

the second eigenvalue?

• If the result of this measure is the positive eigenvalues, what are the possible re-

sults in a subsequent measure of the observable sin θσ2 + cos θσ3? What are the

probabilities of finding each result?
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5 Some simple quantum mechanical system.

We will focus on some simple quantum mechanical systems that have a time independent

Hamiltonian. In this case it is simple to describe in general how a vector |ψ(t0)〉, repre-

senting the system at the time t0, evolves with time. If Ĥ is time independent, one can

check that the following state

|ψ(t)〉 = e−
iĤ
~

(t−t0)|ψ(t0)〉 ≡
∞
∑

n=0

1

n!

[

−iĤ
~

(t− t0)

]n

|ψ(t0)〉 (5.1)

solves the time evolution equation of the postulate 6. In order to compute explicitly |ψ(t)〉
it is clearly convenient to decompose |ψ(t0)〉 along the complete basis of the Hamiltonian

eigenvector. So one of the tools we need is the set of the solutions of the “time indepen-

dent Schroedinger equation” Ĥ|ψE〉 = E|ψE〉. Often this problem can be simplified by

exploiting the following observation.

Two observables Â and B̂ that commute ([Â, B̂] = 0) have a common set eigenspaces.

This means that we can find projectors P(a,b) that project at the same time on the subspace

of eigenvalue a for the first operator Â and the the subspace of eigenvalue b for the second

operator B̂. You can convince yourself that this is reasonable, by looking at the simple

case of finite dimensional Hilbert spaces: in this case if two Hermitian matrices commute,

they have a common set of eigenvectors. Sketch of a proof: Suppose that the |va〉 is the

only eigenvector of eigenvalue a of the Hermitian matrix A. If [A,B] = 0, it is easy to see

that also B|va〉 is an eigenvector of A with eigenvalue a: A(B|va〉) = BA|va〉 = a(B|va〉).
This means that B|va〉 must be proportional to |va〉, in formulae: B|va〉 = b|va〉, which

implies that |va〉 is also an eigenvector of B.

This means that, if we find an observable Â that commute with the Hamiltonian

([Â, Ĥ]), then we can simplify the eigenvalue equation Ĥ|ψE〉 = E|ψE〉, by looking for

the eigenvectors of Ĥ in each eigenspace of Â.

5.1 A free particle

Consider a massive particle that is free to move in one dimension. You are familiar with

the quantum mechanical description of such system in terms of a (wave)function ψ(x, t)

and the Schroedinger equation

− ~
2

2m

∂2

∂x2
ψ(x, t) = i~

∂

∂t
ψ(x, t) . (5.2)

We can now see how this system fits the general framework described in the previous

lectures: ψ(x, t) is an element of a Hilbert space F of functions (see the comment below if
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you are interested to know more about F) with the scalar product defined in (2.6). The

Hamiltonian is defined as

Ĥ = − ~
2

2m

∂2

∂x2
. (5.3)

Let us re-interpret this description in terms of an abstract Hilbert space, where we

have a position and a momentum operator satisfying

[x̂, p̂] ≡ x̂ p̂− p̂ x̂ = i~ . (5.4)

We use the symbol |x0〉 to indicate the “generalized” eigenvectors of the position operator

x̂ and |ψ〉 to indicate the ket representing the state of our system. The usual wavefunction

represents nothing else than the coordinates of |ψ〉 along the basis |x0〉

ψ(x0) ≡ 〈x0|ψ〉 . (5.5)

In this basis we have

• The position operator x̂ is represented by the standard multiplication, that is the

action of x̂ on the vector |ψ〉 correspond to multiply the wavefunction by x.

• Then from (5.4) we see the the momentum operator is p̂ = −i~ ∂
∂x

.

• |x0〉 is represented by δ(x− x0) (notice that this satisfies the normalization (3.8)).

Another very convenient basis is given by the (generalized) momentum eigenvectors |p0〉.
We know that in the position basis (that is when p̂ = −i~ ∂

∂x
) we have

〈x|p0〉 =
1√
2π~

e
i
~
p0x . (5.6)

The factors in front has been chosen in order to satisfy the normalization condition (3.8).

From (5.6) we see that the change from the coordinate basis to the momentum basis is

nothing else but the Fourier transformation

ψ(x0) =

∫ ∞

−∞
〈x0|p0〉〈p0|ψ〉dp0 =

∫ ∞

−∞
e

i
~
p0x0ψ(p0)

dp0√
2π~

, (5.7)

where we have defined 〈p0|ψ〉 ≡ ψ(p0). The inverse relation expressing ψ(p0) in terms of

ψ(x0) is simply

ψ(p0) =

∫ ∞

−∞
〈p0|x0〉〈x0|ψ〉dx0 =

∫ ∞

−∞
e

−i
~

p0x0ψ(x0)
dx0√
2π~

. (5.8)

For the free particle the momentum basis is convenient because we know that the free

Hamiltonian is Ĥ = p̂2

2m
and this implies that Ĥ and p̂ commute

[Ĥ, p̂] = 0 . (5.9)
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Thus the eigenvectors (5.6) of p̂ are also eigenvectors of Ĥ . Thus we can now write the

time evolution of a generic vector |ψ(t0)〉. We first write the state in the momentum basis

and then use (5.1) to obtain

|ψ(t)〉 =

∫ ∞

−∞
e−

ip2

2m~
(t−t0)ψ(p, t0) |p〉dp (5.10)

Subtlety: The precise definition of F is subtle somewhat subtle. Of course the func-

tions in F must be square integrable (the norm of the wavefunction should be finite) and,

in order to show that this is really a Hilbert space, one needs to Lebesgue approach to

defining the integrals. Moreover, consider two functions differ only in one point

f(x) =
1

1 + x2
, g(x) =

{

1
1+x2 if x 6= 0

0 if x = 0
(5.11)

Clearly we want to say that these two functions represent the same physical state, even

if strictly speaking they are not equal. The “easiest” characterisation of F is to start

with the vector space discussed in the example 2.2.1 of week 2 notes and consider its

completion10. Mathematicians refer to this Hilbert space as L2(−∞,∞).

5.1.1 Examples and exercises.

• Heisenberg uncertainty principle: by the triangular inequality and the commutation

relation (5.4), we can derive Heisenberg’s uncertainty principle. Let us suppose that

the system (a massive particle in our case) is described by a |ψ〉. We can define the

uncertainty on the measure of x̂ and p̂ has follows

(∆x)2 = 〈ψ|(x̂− xa)
2|ψ〉 , (∆p)2 = 〈ψ|(p̂− pa)

2|ψ〉 , (5.12)

where xa (pa) are the average values of the position (momentum): xa = 〈ψ|x̂|ψ〉.
We can see that [(x̂ − xa), (p̂ − pa)] = [x̂, p̂]. Thus by using (5.4) we see that

〈ψ|[(x̂− xa), (p̂− pa)]ψ〉 = i~. Then

~
2 = |[(x̂− xa), (p̂− pa)]ψ〉|2 = |〈(x̂− xa)ψ|(p̂− pa)ψ〉 − 〈(p̂− pa)ψ|(x̂− xa)ψ〉|2

≤ |2〈(x̂− xa)ψ|(p̂− pa)ψ〉|2 ≤ 4||(x̂− xa)|ψ〉||2||(p̂− pa)|ψ〉||2 . (5.13)

where in the last step I used Schwarz inequality (1.6).

10This means that we add a new element to the vector space for each different Cauchy sequence which

had no limit in the original vector space; in this way the requirement 2 in the definition of a Hilbert space

is satisfied by construction.
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• Consider a free particle of mass m. If a certain instant (t = 0) the particle is detected

in x = 0 with an experimental uncertainty a. What’s the probability of finding this

particle at a distance at least y from the origin at the time t? The approach you

are probably familiar with is to write down Eq. (5.2) and try to find a solution for

which11

ψ(x, t = 0) =

(

2

πa2

)
1
4

e−
x2

a2 . (5.14)

(recall postulate 5!). The approach described in this paragraph suggests to use the

momentum basis. In this basis we have

ψ(p, t = 0) =

∫ ∞

−∞
〈p|x〉〈x|p〉dx =

(

2

πa2

)
1
4
∫ ∞

−∞
e−

x2

a2 −
i
~

px dx√
2π~

=

(

a2

2πh2

)
1
4

e−
a2p2

4~2 . (5.15)

Thus the evolved wavefunction in momentum space is

ψ(p, t) =

(

a2

2πh2

)
1
4

e−
ip2t

2m~
− a2p2

4~2 (5.16)

Now we can go back to position space where it is easier to compute the probability

requested by the problem

ψ(x, t) =
(

2πa2
)

1
4

∫ ∞

−∞
exp

(

− ip2t

2m~
− a2p2

4~2
+
ipx

~

)

dp

2π~
. (5.17)

This is again a Gaussian integral and can be explicitly evaluated to find the wavefunction

in the standard position space. The result takes exactly the same form of the t = 0

wavefunction (5.14), just with a time depedent parameter a!

ψ(x, t) =

(

2f(t)

πa2

)
1
4

e−f(t)x2

a2 , (5.18)

where f(t) is a complex number and can be written as the product of its norm and phase

or as the sum of the real and imaginary parts

f(t) =
1

1 + 2i~t
a2m

=
eiθ(t)

√

1 + 4~2t2

a4m2

=
1 − 2m~it

a2m2

1 + 4~2t2

a4m2

. (5.19)

11As usual, one can choose the overall constant A to work with a state of norm one: A = (2π)1/4
√
a.



Rodolfo Russo - QMS - Notes 22

So finally we can write the wavefunction at the time t and, in order to keep it as simple

as possible, we summarize the overall phase in exp(iΘ(t))

ψ(x, t) =

(

2f(t)

πa2

)
1
4

ei 2m~it
a2m2

x2

a2 exp

(

− x2

a2(1 + 4~2t2

a2m2 )

)

. (5.20)

Notice that the probability density in position space is a Gaussian with a time dependent

width

a(t) =
a

√

|f(t)|
= a

√

1 +
4~2t2

a4m2
. (5.21)

So the uncertainty on the position of the particle increases over time. Since the average

position is zero, we have

∆x2 =

∫ ∞

−∞
x2|ψ(x, t)|2dx =

a2

4

(

1 +
4~

2t2

a4m2

)

(5.22)

However the uncertainty over the momentum is constant! This is not immeaditely evident

if we use the standard formulation

∆p2 =

∫ ∞

−∞
ψ(x, t)∗(−~

2)
d2ψ(x, t)

dx2
dx =

~
2

a2
, (5.23)

but it is obvious if we use ψ(p, t) in (5.16)

∆p2 =

∫ ∞

−∞
p2|ψ(p, t)|2dp =

∫ ∞

−∞
p2|ψ(p, t = 0)|2dp =

~
2

a2
. (5.24)

Exercise. Consider a particle of mass m that is constrained to be in a 1-dimensional box

of size 2a, but that otherwise is free. For sake of concreteness, we will parametrize the

box with −a < x < a.

• Find the eigenvectors and the eigenvalues of the Hamiltonian describing this system.

• At the time t = 0, the particle is described by the wavefunction ψ(t = 0) which is in

the positive half of the box (0 < x < a) with equal probability of being in any point

of that part of the box. What is the probability of finding, in a physical measurement

at the time t = 0, the lowest possible eigenvalue of the energy operator?

• Consider again the wavefunction ψ(t = 0) described above: calculate the wavefunc-

tion at the time t supposing that it evolves freely (that is without any external

perturbation).

• What is the probability of finding the particle in the negative half of the box at the

time t?
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• What is the probability of finding, in a physical measurement at the time t, the low-

est possible eigenvalue of the energy operator? What is the wavefunction describing

the particle after this measurement?

5.2 The harmonic oscillator.

A particle of mass m moves in 1-dimension with a potential U(x) = 1
2
kx2. The classical

trajectory is an oscillatory motion with frequency ω

x(t) = A cos(ωt+ φ) , with ω =

√

k

m
, (5.25)

where φ is an arbitrary constant that we can set to zero by choosing an appropriate initial

time t = 0 and A is the amplitude of the oscillation.

Quantum mechanically we know that the harmonic oscillator cannot have zero total

energy, as this would violate Heisenberg’s uncertainty principle. The state with minimal

energy is called ground state and has energy E0 = ~ω/2. Then we have an infinite set of

excited states with energies En = ~ω(n + 1/2). Let us derive these results by using an

abstract operator description. The Hamiltonian of the system is

Ĥ =
p̂2

2m
+

1

2
mω2x̂2 (5.26)

and we want to find the eigenvectors of Ĥ. The easiest approach is to consider the

operators

â =

√

mω

2~
x̂+ i

√

1

2m~ω
p̂ , â† =

√

mω

2~
x̂− i

√

1

2m~ω
p̂ . (5.27)

We can invert these relation and write the operators x̂, p̂ in terms of the lowering and

raising operators

x̂ =

√

~

2mω

(

â + â†
)

, p̂ = −i
√

m~ω

2

(

â− â†
)

(5.28)

In terms of the raising/lower operators the canonical commutation relations [x̂, p̂] = i~

and the Hamiltonian (5.26) read

[â, â†] = 1 , Ĥ = ~ω

(

â†â +
1

2

)

(5.29)

From this equation we immediately see that all energy eigenvalues must be positive.

Suppose that |φ〉 is an eigenvector of norm one and eigenvalue λ, then

λ = 〈φ|Ĥ|φ〉 = ~ω

(

〈âφ|âφ〉 +
1

2

)

> 0 . (5.30)
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An explicit realisation of the commutation relations in Eq. (5.29) is to think about the

operators â and â† as acting on the space of polynomials P (a) with complex coefficients:

â is identified with the derivative d
da

and so it lowers the degree of the polynomial by

one, while â† is identified with the multiplication by a and so raised the degree of the

polynomial by one. We can easily check that this identification is consinsten with the

commutation relation

[â, â†]|v〉 = |v〉 ⇔ d

da
(aP (a)) − a

d

da
(P (a)) = P (a) . (5.31)

Then we need to define a scalar product on the space of polynomial such that the â

and â† are actually one the adjoint of the other. Clearly this has to exchange the role of

the multiplication by a and the derivative with the respect to a. So if each ket-vector is

represented by standard polynomials (for instance |P 〉 = a2 + i), the corresponding bra-

vector is represented by the same polynomial where each a is substituted with a derivative

and the new coefficients are the complex conjugate of the original one (〈P | = d2

da2 −i). The

action of any bra on a vector is obtained simply be computing the action of the derivatives

on the polynomial and then setting a to zero. So for instance, the scalar product of |P 〉
and |Q〉 = a+ 1 is

〈P |Q〉 =

[(

d2

da2
− i

)

(a + 1)

]

a=0

=

[

d2a

da2
+
d21

da2
− ia− i

]

a=0

= −i . (5.32)

Now it is straightforward to check that the polynomial of degree zero |0〉 is the eigen-

state of Ĥ with minimal eigenvalue. In order for this to happen the first term on the right

hand side of (5.30) should minimal possible value, i.e. zero:

â|0〉 =

[

d

da
P (a)

]

a=0

= 0 ⇒ P (a) = const , (5.33)

and so the corresponding eigenvalue of the harmonic oscillator Hamiltonian is ~ω/2. By

using the scalar product defined above we immediately see that the ground state as defined

is normalised to one if we take P (a) = 1. Then it is clear that any other monomial

|n〉 = Cna
n is an eigenstate of the Hamiltonian in (5.29)

â†â|n〉 = a
d

da
Cna

n = nCna
n , (5.34)

which implies that the corresponding eigenvalue for Ĥ is

λn = ~ω

(

n +
1

2

)

.
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Again it is easy to fix the normalisation Cn by requiring

〈n|n〉 ⇔ |Cn|2
[

dn

dan
an

]

a=0

= n!|Cn|2 , (5.35)

which implies Cn = 1/
√
n!. Thus we can summarise the spectrum of Ĥ by writing

|n〉 =
1√
n!

(

â†
)n |0〉 . (5.36)

We saw that the operators operators â and â† lower/raise the energy level of an eigenstate

of the Hamiltonian and that the normalised eigenvectors are related by

â|n〉 =
√
n|n− 1〉 and â†|n〉 =

√
n + 1|n+ 1〉 . (5.37)

Finally a remark on the structure of the space of the possible states for the harmonic os-

cillator: the space of polynomials with the scalar product defined in (5.32) is not a Hilbert

space, because it does not meet the second requirement listed at the end of Section 1.

Thus we need to consider its completion, that is series, and not just polynomials, in a

whose coefficients are square summable. So the full space of states is isomorphic to l2 as

deined in Section 1.

5.3 Connection with the usual wavefunctions.

Let us see that there is just a single state satisfying this condition. In order to do this,

it is convenient to go back to the position space description ψ0(x) ≡ 〈x|0〉, where the

condition (5.33) reads as
(

√

mω

2~
x+ ~

√

1

2m~ω

d

dx

)

ψ0(x) = 0 . (5.38)

This is a first order differential equation which has only one solution

ψ0(x) = A exp

(

−1

2

mω

~
x2

)

. (5.39)

As usual, it is convenient to fix the overall normalization by requiring that the eigenstate

has norm one, which implies

A =
(mω

π~

)
1
4
. (5.40)

We can now use again the commutation relation (5.29) and build the entire spectrum

of the harmonic oscillators (that is all the eigenvectors of Ĥ) from the ground state by

acting with â†:

â|0〉 = 0 ⇒ N̂
(

â†
)n |0〉 = n

(

â†
)n |0〉 . (5.41)

This means that
(

â†
)n |0〉 is proportional to |n〉; in particular, if we want to keep working

with orthonormal eigenstates, we have
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5.3.1 Examples and exercises.

Semiclassical states. The quantum mechanical energy eigenstates of the harmonic oscilla-

tor seems to be rather different from classic trajectories derived in (5.25). We would like

to find a quantum mechanical state describing a motion that is very close to the classical

one. In particular, we would like to find a state |α〉 for which the average value of the

position operator:

〈α|x̂|α〉 = A cos(ωt+ φ) =
1

2

(

Aeiφeiωt + Ae−iφe−iωt
)

. (5.42)

By using (5.28), we can rewrite Eq. (5.42) as

〈α|x̂|α〉 =

√

~

2mω
〈α|âα〉 +

√

~

2mω
〈α|â†α〉 . (5.43)

Clearly if we can find a ket that is an eigenstate of â of eigenvalue

α =

√

mω

2~
Ae−iφ ,

then (5.42) at t = 0 would follow. So let us look for a state |α〉 satisfying

â|α〉 = α|α〉 . (5.44)

We can use the explicit realisation of the raising and lowering operators in (5.31) and

transform (5.44) in a simple differential equation

d

da
f(a) = αf(a) ⇒ f(a) = Aeαa . (5.45)

This function is not a polynomial, but can be approximated arbitrary well by a Cauchy

series of polynomials, so it is part of the l2 space describing the Harmonic oscillator states.

Thus, in abstract terms, we see that the eigenstates we are looking for are

|α〉 = Aeαâ† |0〉 . (5.46)

These states are called coherent states and the average value for the position operator x̂

when the state of the particle is described by the coherent state α agrees with (5.42) for

any t. We can check this explicitly by evolving |α〉 at a generic time

|α, t〉 = e−
i
~
Ht|α〉 =

∞
∑

n=1

e−iωt(n+ 1
2
) α

n

√
n!
|n〉 . (5.47)
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〈α, t|x̂|α, t〉 = |A|2
√

~

2mω

∞
∑

n,k=1

ᾱkαn

√
k!n!

(

eiωt(k−n)〈k|a|n〉 + eiωt(k−n)〈k|a†|n〉
)

=
1

2

(

Aeiφeiωt + Ae−iφe−iωt
)

. (5.48)

The second line follows from the first one by using (5.37), the result of the exrcise below

for A and 〈k|n〉 = δkn (recall that eigenstates with different eigenvalues are orthogonal).

Observation. There is a simpler way to derive (5.48) from (5.43). Suggestion: try to

calculate the time derivative of 〈α, t|x̂|α, t〉 by using (5.1).

Exercises.

• Normalize to one the coherent states (5.46).

• Consider a charged harmonic oscillator in a uniform constant electric field. Write

the Hamiltonian and find the eigenvalues.

6 Perturbation theory.

We saw that finding the complete set of eigenvectors of the Hamiltonian is the key point

to solve the dynamics of a physical system. Unfortunately it is often very difficult to solve

exactly this problem. By now you have already seen the important situations where we

can find all solutions to the eigenvector equation H|ψ〉 = E|ψ〉

• The free particle and some simple variation where the potential is piecewise constant.

• The harmonic oscillator.

• A particle in a central potential V (r) = C/r, where C is a constant (such as the

electron in the Hydrogen atom).

How can we deal with more complicated cases? Is there any hope to tackle physical

interesting situations? In this section we will focus on systems that are very “close” to

the simple cases that we can solve exactly, while in the next section we will consider

systems with more than one constituents (multiparticle systems).

6.1 Time independent perturbation theory.

Consider a system described by an Hamiltonian H which can be splitted in two terms:

H0 that yields the dominant contribution to the energy eigenvalues and a perturbation
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term δH . Suppose that we can solve exactly the eigenvalue problem for H0 and that its

spectrum of eigenvector is discrete and non-degenerate

H0|ψ(0)
n 〉 = E(0)

n |ψ(0)
n 〉 with n = 1, 2, . . . (6.1)

We can solve the complete eigenvalue problem H|ψn〉 = E|ψn〉 in an iterative approach

where we treat δH in H = H0 + δH as a small perturbation.

With this approximation, it is intuitively clear that the exact eigenvectors |ψn〉 are

not too different from the eigenvectors of H0 (|ψ(0)
n 〉). As a guess (ansatz) we can take the

exact energy E to be close to the unperturbed one

En = E(0)
n + E(1)

n + E(2)
n + . . . (6.2)

with E
(0)
n ≫ E

(1)
n ≫ . . . and we can write |ψn〉 as

|ψn〉 = |ψ(0)
n 〉 + |ψ(1)

n 〉 + |ψ(2)
n 〉 + . . . (6.3)

where |ψ(n)
n 〉 are smaller and smaller corrections (that is |||ψ(2)

n 〉||2 ≪ |||ψ(1)
n 〉||2 ≪ 1).

From now let us indicate the perturbation term δH with W (1) in order to stress that it is

of the same order of the first correction to the eigenvector (i.e. |ψ(1)
n 〉). By using (6.3) in

the exact eigenstate equation we get

H0|ψ(0)
n 〉+

(

H0|ψ(1)
n 〉 +W (1)|ψ(0)

n 〉
)

+. . . = E(0)
n |ψ(0)

n 〉+
(

E(0)
n |ψ(1)

n 〉 + E(1)
n |ψ(0)

n 〉
)

+. . . , (6.4)

where I we stopped to the first order in the perturbative expansion, which means that

all terms of order two are understood in the dots. The first terms in the left and the

right hand sides of (6.4) are equal by construction. Then we can exploit the fact that the

eigenvectors |ψ(0)
n 〉 form a orthonormal basis and derive from (6.4)

〈ψ(0)
k |H0|ψ(1)

n 〉 + 〈ψ(0)
k |W (1)|ψ(0)

n 〉 = E(0)
n 〈ψ(0)

k |ψ(1)
n 〉 + E(1)

n δkn . (6.5)

If we focus on the case k = n, then the first terms in the left and the right hand sides are

equal. and Eq. (6.5) implies

E(1)
n = 〈ψ(0)

n |W (1)|ψ(0)
n 〉 . (6.6)

On the other hand if we consider the case k 6= n in (6.5), we can derive the form of |ψ(1)
n 〉

|ψ(1)
n 〉 =

∑

k 6=n

〈ψ(0)
k |W (1)|ψ(0)

n 〉
E

(0)
n − E

(0)
k

|ψ(0)
k 〉 (6.7)

A similar procedure can be repeated in an iterative fashion. If we now consider the

second order terms in (6.4), that is the first terms that were neglected we have

H0|ψ(2)
n 〉 +W (1)|ψ(1)

n 〉 = E(0)
n |ψ(2)

n 〉 + E(1)
n |ψ(1)

n 〉 + E(2)
n |ψ(0)

n 〉 .
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Again by taking the scalar product with |ψ(0)
n 〉 of this identity we get the second order

correction for the energy

E(2)
n =

∑

k 6=n

|〈ψ(0)
k |W (1)|ψ(0)

n 〉|2
E

(0)
n − E

(0)
k

. (6.8)

A similar approach can be applied also in the case where the eigenvectors of H0 are

degenerate. In this case, one has a freedom in choosing the eigenvector basis for H0 and

the most convenient choice is to diagonalize the perturbation in each of the eigenspaces of

H0. Also the case of system] with a continuous spectrum can be treated along the same

lines Please, for both these cases, refer to the books for a more detailed treatment.

6.1.1 Examples and exercises.

Consider a physical system that is described by the Hilbert space C3 and by the Hamil-

tonian

H =





4 2ǫ 0

2ǫ 0 ǫ

0 ǫ −1



 =





4 0 0

0 0 0

0 0 −1



+





0 2ǫ 0

2ǫ 0 ǫ

0 ǫ 0



 ≡ H0 +W (1) .

The eigenvalues and eigenvectors can be easily found exactly by looking for the solution

of

4x+ 5ǫ2x+ 3x2 − x3 = 0 ,

which yields

x1 =
3

2
+

5

2

√

1 +
4

5
ǫ2 , x2 = 0 , x3 =

3

2
− 5

2

√

1 +
4

5
ǫ2 . (6.9)

Let us now use the approximate approach discussed in this section and treat W (1) as a

perturbation. This is justified when ǫ ≪ 1, thus we should find the Taylor expansion of

the results (6.9) for small ǫ . This is indeed the case. The eigenvectors of H0 are

|v1〉 =





1

0

0



 , |v2〉 =





0

1

0



 , |v3〉 =





0

0

1



 , (6.10)

with eigenvalues 4, 0, and −1 respectively. Now it is clear that, in this case, 〈vi|W (1)|vi〉 =

0, thus Eq. (6.6) implies that there are no first order corrections to the energies, in

agreement with (6.9). At the following order, from (6.8) we have

x1 = 4 + ǫ2 , x2 = 0 , x3 = −1 − ǫ2 , (6.11)
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again in agreement with the expansion of Eq. (6.9).

Exercises.

• Use perturbation theory to compute the eigenstate of H in the example above up

to the first order in ǫ. Compare the results you obtained with the exact expression.

• Consider a harmonic oscillator of frequency ω perturbed by a small linear potential

W (1) = ǫω
√

~ωmx̂. Use perturbation theory to find the first order corrections to

the eigenvectors and the second order corrections to the eigenvalues.

7 Multiparticle systems.

So far we mainly focused on the dynamics of a single particle, but clearly we would like

to apply the Quantum Mechanics formalism to more complex systems: for instance, the

scattering of two particles in an accelerator, the description of atoms with more than one

electrons, the descriptions of crystals etc.

7.1 Non identical particles.

The simplest situation is to consider two different particles (such as an electron and a

muon). If the state of the first particle alone is described by the Hilbert space H1 and

the state of the second one by H2, a physical system composed by the two particles is

described by a vector in H = H1 ⊗H2, the tensor product of the two Hilbert spaces.

Already in this simple case, we can see a peculiar property of the quantum mechanical

treatment of multiparticle states. We can separate the states in the tensor product space

H in two classes

• separable states |ψ〉s which can be written as products of a state |ψ〉1 in H1 and a

state |ψ〉2 in H2

• entangled states |ψ〉e which in any basis are described only by sums of products

states.

In the second type of states there is a statistical correlations between measurements

performed on the two particles that is peculiar to quantum mechanics. See below for an

explicit example.
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7.1.1 Examples and exercises.

Consider a first particle whose state is describe by the Hilbert space C2 and a second one

whose state is in C3. The vectors describing the composite systems live in C2 ⊗C3. This

is a space of dimension 6 and we can find an orthonormal basis just by multiplying the

elements of the basis of the two constituents

|v1〉 =

(

1

0

)

⊗





1

0

0



 , |v2〉 =

(

1

0

)

⊗





0

1

0



 , |v3〉 =

(

1

0

)

⊗





0

0

1



 , (7.1)

|v4〉 =

(

0

1

)

⊗





1

0

0



 , |v5〉 =

(

0

1

)

⊗





0

1

0



 , |v6〉 =

(

0

1

)

⊗





0

0

1



 .

Each one of these states is clearly separable, since it is explicitly written as a product

state. Thus there is no correlation between the measurements performed on each particle.

For instance, we can consider the observables:

O1 =

(

1 0

0 −1

)

, O2 =





1 0 0

0 0 0

0 0 −1



 . (7.2)

where O1 acts on the first particle and O2 on the second one. If the state of the composite

system is described by |v〉1, then the results of a measurements of both O1 and O2 is

always yield 1. Let us now consider a different state of the composite system described

by
1√
2

(

|v〉1 + |v〉6
)

. (7.3)

This is an entagled state. The measurement of the two observables O1 and O2 is now

related: if we carry first the measurement on the first particle and this yields the values 1

then any subsequent measurement of O2 will also lead to the values 1. On the contrary,

if the value of O1 turns out to be −1, then also the value of O2 in any subsequent

measurement will be −1.

Exercises.

Consider the example discussed above: is the state below an entagled state?

1√
2

(

|v〉1 + |v〉4
)

. (7.4)
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7.2 Identical particles.

If we deal with a system whose constituents are identical objects then there is a further

twist that is again peculiar to Quantum Mechanics. Consider a system with two identical

particles that live in the same region of space (that is the wavefunctions do overlap). In a

first measurement, at t = 0, we detect one particle in the position x1 and the other one in

the position x2. In a second measrement at a slightly later time t, a particle is detected in

the position x1 + ǫ and another one is detected in x2 + ǫ, where ǫ is a small displacemente

as t → 0. In classical physics, we could follow the trajectories of each particle and say

that the first one has moved from x1 to x1 + ǫ. In Quantum Mechanics there is no way to

be sure that the particle detected in x1 + ǫ is the same as the one detected in x1 (recall

the time evolution derived in (5.20)!).

This inability to distinguish identical particle must be accounted for in the basic

postulates. For instance, consider a system of two identical particles each one described

by a state in the Hilbert space H. We know that the composite system is described by a

state in the tensor product HP = H ⊗H, where the two factors must be identical since

the particles are identical. Since it is arbitrary to say that the first factors describes the

first particle, we must require that all measurements should yield the same results even if

we swap the roles of the two factors in HP . Of course, this can be achieved by requiring

that the state |v〉 ∈ Hp is invariant under the exchange of the two factors

|v〉 =
∑

ij

cij|vi〉 ⊗ |vj〉 =
∑

ij

cij|vj〉 ⊗ |vi〉 = P 12|v〉 , (7.5)

where P 12 is an operator acting on H that permutes the role of the two factors. However

this is too restrictive, since we know that an overall phase in the state does not yield

any observable consequence. In particular, for particles that propagates in more than two

dimensions we can have only two cases12

• Bosonic particles, whose wavefunction must be symmetric |v〉B = P 12|v〉B.

• Fermionic particles, whose wavefunction must be antisymmetric |v〉F = −P 12|v〉F .

Also the observables in composite systems with identical particles must have special prop-

erties under the exchange of the labels indicating the various particles. In particular, an

observable O must commute with the operation that permute the role of two particles

P ij: [O,P ij] = 0, ∀ij.
12In 2-dimensional systems we can have “anyonic” particles whose symmetry properties involve an

arbitrary phase.
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7.2.1 Examples and exercises.

Consider a system of two identical particles each one described by a state in C2. If this

particles are boson then the possible states are

|v1〉B =

(

1

0

)

⊗
(

1

0

)

, |v3〉B =

(

1

0

)

⊗
(

1

0

)

(7.6)

|v2〉B =
1√
2

[(

1

0

)

⊗
(

0

1

)

+

(

0

1

)

⊗
(

1

0

)]

.

On the other hand, if the two particles are fermions then there is only one possible state

|v〉F =
1√
2

[(

1

0

)

⊗
(

0

1

)

−
(

0

1

)

⊗
(

1

0

)]

. (7.7)

Exercises.

• Consider a two particle state whose constituents are bosons. The initial state of the

system is then described by a symmetric state. Is this property preserved by the

time evolution? Why?

8 Symmetries.

We saw that Hermitean operators play a central role in Quantum Mechanics: they rep-

resent the observables of a physical system. There is another very important class of

operators: the unitary operators U , that are the operators preserving the norm of any

vectors

||U |ψ〉||2 = ||〈ψ|U †Uψ〉 = |||ψ〉||2 , ∀|ψ〉 . (8.1)

This implies that U †U = 1. If we work with a finite dimensional Hilbert space, where

we can represent the operators with matrices, then we can check explicitly if a matrix is

unitary (see the example below). Unitary operators are important in QM, because they

represent the action of a symmetry operation on a physical system: starting with a system

described by the ket |ψ〉, we can obtain the ket U |ψ〉 which describes the same system

after the symmetry operation related to U . U must be a unitary operator since we want

to keep the normalization condition |||ψ〉||2 = 1.

It is easy to build explicitly unitary operators starting from the Hermitean ones we

have been using so far. We can just repeat the trick we used in (5.1) with the Hamiltonian:

if now H is any operator satisfying H = H†, then we can repeat the same steps13 and

prove that Ua = exp(iaH) is a unitary operator for any real a.

13Starting from a vector |ψ〉 of norm 1, we can check that the norm of Ua|ψ〉 is independet of a and

thus is one.
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8.1 Translations.

Consider a free particle in one dimension whose state is encoded by the wavefunction (5.14),

which describes a particle around the position x = 0 with a precision determined by a.

Since the particle is free, we can displace it by x0 (so that the Gaussian is centred in x0

instead of z0) and many observables, such as the energy of the system, should not change.

The operator representing this operation should act on (5.14) as follows:

UT (x0)

[

A√
πa

e−
x2

a2

]

=
A√
πa

e−
(x−x0)2

a2 . (8.2)

We can derive the form of UT (x0) looking at the case of an infinitesimal translation (a very

small x0), so that we can Taylor-expand the right hand side of the above equation and

keep only the first two terms

UT (x0)

[

A√
πa

e−
x2

a2

]

=
A√
πa

e−
x2

a2 + x0
d

dx0

[

A√
πa

e−
(x−x0)2

a2

]

x0=0

+ . . . . (8.3)

From this result we see that UT (x0) = 1 + x0d/dx0 + . . . = 1 − x0d/dx + . . .. Thus, for

small x0 we can write UT (x0) = 1 − ix0p̂/~ + . . . and by using the observation above we

can readily guess that

UT (x0) = exp

(

− i

~
x0p̂

)

. (8.4)

At this point it is easy to see that all possible translation operators form a group (see the

first Section):

UT (x0)UT (x1) = exp

(

− i

~
x0p̂

)

exp

(

− i

~
x1p̂

)

= exp

(

− i

~
(x0 + x1)p̂

)

≡ UT (x0+x1) . (8.5)

With these results we established an important fact

The momentum is directly related to the translation operation (technically

speaking: the momentum is the generator of the translations).

Notice that, if an observable O commutes with p̂, then the results of a measurment of

O are the same if carried out on the system before or after a translation. For instance,

in the case of a free particle we have [H, p̂] = 0; then the wavefunctions (5.14) and (8.2)

yields the same results for a measurement of the energy.

8.1.1 Examples and exercises.

Notice that the result (8.4) is not tight to a particular realization of the position/momentum

operators, such as the position-space wavefunction. For instance, when the translation
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operator acts on the momentum-space wavefunctions (see, for instance, Eq. (5.16)), then

it simply multiplies ψ(p) by the phase exp(−ix0p/~).

Exercises.

• Use the explicit form of the translation operator (8.4) and prove Eq. (8.2).

8.2 The rotations.

Another relevant group of symmetries is represented by the rotations (here we focus on

the rotation in the 3-dimensional space). The generator of the rotation is another very

important observable: the angular momentum.

Lx = ŷp̂z − ẑp̂y ≡ L1 , (8.6)

Ly = ẑp̂x − x̂p̂z ≡ L2 ,

Lz = x̂p̂y − ŷp̂x ≡ L3 .

By using the canonical commutation relation [x̂, p̂] = i~, we obtain the following relations

[L1, L2] = i~L3 , [L1, L3] = −i~L2 and cyclical permutations. (8.7)

If we repeat the same argument discussed in the case of translation, we should see that

the unitary operators generated by the exponential of the angular momentum represent

the rotations, that is for a rotation of an angle θ around the z-axis we should have

UR(θ)e
− (~r−~r0)2

a2 = exp

(

− i

~
θLz

)

e−
(~r−~r0)2

a2 = e−
(~r−~r1)2

a2 , (8.8)

where I neglected the overall normalization of the wavefunction that is irrelevant in this

computation. The position of the particle before the rotation is ~r0, while after the rotation

is ~r1. The coordinates of these two points are related as explained in the example below.

It is straightforward to check that (8.8) holds in the case of very small angles θ: again, as

in the computation done before for the translations, it is sufficient to Taylor-expand all

θ-dependent quantitites up to the first order and, in this case, use the definition of Lz , see

Eq. (8.6). Notice that the wavefunctions that depend only r2 (such as the one above with

~r0 = 0) are invariant under rotations, as expected! In order to check this it is sufficient

to calculate the action of the Li’s on a (wave)function that depends only on r2 and see

that is trivial (zero). For instance

Lzψ(r2) = −i~

(

x
∂

∂y
− y

∂

∂x

)

ψ(r2) (8.9)

= −i~
dψ(r2)

dr2

(

x
∂r2

∂y
− y

∂r2

∂x

)

= −i~
dψ(r2)

dr2
(2xy − 2yx) = 0 .
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A similar computation holds also for the other components of the angular momentum Lx

and Ly.

Finally let us notice that also the set of all rotations forms a group. We will discuss

the precise nature of this group later in this and the next sections.

8.2.1 Examples and exercises.

Consider for instance the operator

O(θ) =





cos θ − sin θ 0

sin θ cos θ 0

0 0 1



 (8.10)

acting on the space C3. It represents a rotation of an angle θ around the z-axis. For

instance, consider a point whose coordinates are x0 = r cosα , y0 = r sinα.

x0

y0

y1

x1

α

θ

After the rotation the new coordinates are

x1 = r cos(α + θ) = r cosα cos θ − r sinα sin θ = x0 cos θ − y0 sin θ ,

y1 = r sin(α+ θ) = r cosα sin θ + r sinα cos θ = x0 sin θ + y0 cos θ .

Exercises.

• Consider the operator L2

L2 ≡ L2
x + L2

y + L2
z =

3
∑

i=1

L2
i . (8.11)

Show explicitly that it commutes with all the components of the angular momentum

[L2, Lx] = 0 , [L2, Ly] = 0 , [L2, Lz] = 0 . (8.12)
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• Check explicitly that

(Lx+iLy)(Lx−iLy) = L2−L2
z+~Lz , (Lx−iLy)(Lx+iLy) = L2−L2

z−~Lz . (8.13)

8.3 The angular momentum.

It is clearly important to find the basis of the angular momentum eigenvectors: this can

be useful when we want to perform explictly a rotation (in this basis the operator in the

exponent becomes just a number) or when the Hamiltonian commutes with Li (as in the

problem of the Hydrogen atom). Of course we can not find simultaneous eignvectors for

all components of the angular momentum, since they do not commute, see (8.6). The best

we can achieve is to choos one component (for instance Lz) and look for the simultaneous

eigenvectors of L2 and Lz. This is possible thanks to Eq. (8.12). We already know one set

of eigenvectors: from (8.9) it follows that any wavefunction ψ(r2) is an eigenvector with

eigenvalue zero for both L2 and Lz . We can attack the general problem by following an

approach similar to the one used to find the energy eigenvectors of the harmonic oscillator

hamiltonian.

In this derivation we will be using only two facts:

• the Hermitean properties L†
i = Li,

• the commutation relations between Li, given in (8.7), and their consquences.

Thus the results we will derive do not depend on the explicit form of the angular mo-

mentum operators (8.6) and hold for any triplet of Hermitean operators satisfying (8.7).

In order to stress that the results are general we will use Jx, Jy and Jz to indicate three

generic Hermitean operators satisfying (8.6).

Step 1. Suppose that we have an eigenvector of J2 and Jz

J2|j,m〉 = ~
2j(j + 1)|j,m〉 , Jz|j,m〉 = ~m|j,m〉 , (8.14)

where for later convenience we denoted the eigenvalue of J2 with ~
2j(j + 1). Let us show

that the possible eigenvalues of J2 are non-negative (so that we can write them as the

~
√

j(j + 1) with j ≥ 0). This is easily done:

~
2j(j + 1) = 〈j,m|J2|j,m〉 = ||J |j,m〉||2 ≥ 0 . (8.15)

Step 2. Let us introduce the operators L±:

J+ = Jx + iJy , J− = Jx − iJy . (8.16)

It is straightforward to check that

[Jz, J+] = ~J+ , [Jz, J−] = −~J− , (8.17)
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while from (8.12) it is clear that also J± commute with J2. Now, starting from |j,m〉, we

can generate new eigenvectors by acting with J±. By using (8.17) we have

J2J±|j,m〉 = ~
2j(j + 1)J±|j,m〉 , JzJ±|j,m〉 = ~(m± 1)J±|j,m〉 . (8.18)

So the state J±|j,m〉 is an eigenvector of J2 with the same eigenvalue as |j,m〉 and is

also an eigenvector of Jz with eigenvalue ~(m ± 1). This proves that we can increase or

dercrease the quantum number m by an integer.

Step 3. The value of m must be bigger than −j and smaller than j:

−j ≤ m ≤ j . (8.19)

This is done by using again that the scalar product is non-degenerate together with (8.13)

||J+|j,m〉||2 = 〈j,m|J−J+|j,m〉 = 〈j,m|(J2−J2
z −~Jz)|j,m〉 = ~

2
(

j(j+1)−m(m+1)
)

.

(8.20)

Since ||J+|j,m〉||2 ≥ 0 then we must have

j(j + 1) −m(m+ 1) = (j −m)(j +m+ 1) ≥ 0 , (8.21)

which imples −j − 1 ≤ m ≤ j. In the same fashion we can calculate the norm square of

J−|j,m〉

||J−|j,m〉||2 = 〈j,m|J−J+|j,m〉 = 〈j,m|(J2−J2
z +~Jz)|j,m〉 = ~

2
(

j(j+1)−m(m−1)
)

.

(8.22)

and we find that it is non-negative only if

j(j + 1) −m(m− 1) = (j −m+ 1)(j +m) ≥ 0 , (8.23)

which imples −j ≤ m ≤ j + 1. By combining these two results we find (8.19).

Step 4. The quantum number j must be either integer of half-integer. From step 2

above, we know that J± act as raising/lowering operators for the Jz quantum number.

If we begin with an eigenvector |j,m〉 we can apply J+ (or J−) in order to increase

(or decrease) the value of m. On the other hand we cannot violate the bound found

above (8.19), thus at a certain point we must find

J+|j,m〉 = 0 and J−|j,−m〉 = 0 . (8.24)

This is possible only if m = j (see (8.20)). Now I can start from the ket |j, j〉 and apply

J− k times to lower the value of the Jz eigenvalue to m = j − k. On the other hand we

know that m ≥ −j, which implies that after k = 2j lowering operators have been applied

to |j, j〉 we obtain a vector proportional to |j,−j〉 and a further J− would simply lead to
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the zero vector. Since k is integer (it counts the number of J−), then j must be integer

of half-integer, as claimed above.

As a final remark, let us specialize this analysis to the angular momentum: in this

case (8.6) implies that only integer values of j are possible (see the discussion below in

the Example section).

8.3.1 Examples and exercises.

Let us focus on the case of the angular momentum and derive some explicit expression

for the eigenstates. We already know that any wavefunction ψ(r2) is an eigenstate with

j = m = 0. Thus if we find other eigenfunctions (with non-zero eigenvalues) we are free to

multiple them by any function of r2 only without changing the eigenvalues. You already

saw this pattern in the study of the Hydrogen atom, where the energy eigenfunctions are

the product of a radial function times a purely angular function that is an eigenvector of

L2 and Lz (the spherical harmonics for the 2-sphere). We can derive the explicit form of

the spherical harmonics by using the results of this section. We start by checking that

the function

Y m=j
j = N j

j

(

x+ iy

r

)j

= N j
j (sin θ)je2πijφ (8.25)

is an eigenfunction of L2 and Lz with eigenvalues j and m = j. The last relation on thee

right hand side is just the rewriting of the Y j
j in polar coordinates. The quantum number

j here can take only integer values, otherwise the function Y m=j
j is not single valued (as

it is clear if we look at the form written in polar coordinates and recall that φ = 0 and

φ = 2π represent the same point). Let us look at the first non-trivial case j = 1. By

using the L− operator we can find the other spherical harmonics

Y m=0
1 =

L−

~
√

2

(

N 1
1 Y

1
1

)

= −N 1
1

√
2z

r
. (8.26)

The numerical factor of
√

2~ ensures that the new spherical harmonics is normalized to

one if the old one is normalized to one. It follows from (8.22) which in general requires

to devide by ~
√

(j −m+ 1)(j +m) everytime L− acts on |j,m〉 if we want to work with

vector of norm one.

Y m=−1
1 =

L−

~
√

2

(

−N 1
1

√
2z

r

)

= −N 1
1

x− iy

r
. (8.27)

You can rewrite these last two equation in polar coordinates and find the expression for

the spherical harmonics that you did see in the analysis of the Hydrogen atom. You can

repeat the same steps starting from (8.25) with j = 2 and find the explicit form of the 5

harmonics of the level 2.
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Exercises.

• Calculate N 1
1 in (8.25) by requiring that

∫

Ȳ 1
1 Y

1
1 dΩ = 1

* Consider the wavefunction ψ = x2/r2. What is the probability of finding the values

j and m in a simultaneous measurement of L2 and Lz?

9 The spin.

We saw that a triplet of operators satisfying the commutation relations (8.7) can admit

eigenvectors with a half-integer quantum number j. We also know that this kind of

eigenvectors do not appear when we focus on the case of the angular momentum, where

the generator take the particular form of Eq (8.6). One might wonder whether the case of

half-integer j appears in some interesting physical system or not. The surprising answer

is that this case is indeed very common!

9.1 SO(3) representations.

Consider the three wavefunctions (8.25), (8.26) and (8.27) derived in the previous example.

They form a basis for the subspace of wavefunctions with j = 1 (so the J2 eigenvalue is

2~
2 for all these states). We can represent these three states as follows

Y 1
1 ↔ |1, 1〉 =





1

0

0



 , Y 0
1 ↔ |1, 0〉 =





0

1

0



 , Y −1
1 ↔ |1,−1〉 =





0

0

1



 . (9.28)

From the results summarized in the previous example, we know how Lz and L± act that

in this subspace

Lz = ~

(

|1, 1〉〈1, 1| − |1,−1〉〈1,−1|
)

, (9.29)

L+ =
√

2~

(

|1, 1〉〈1, 0| + |1, 0〉〈1,−1|
)

,

L− =
√

2~

(

|1, 0〉〈1, 1| + |1,−1〉〈1, 0|
)

.

These operators cen ba written in terms of matrices acting on the vector (9.28)

Lz = ~





1 0 0

0 0 0

0 0 −1



 , L+ = ~





0
√

2 0

0 0
√

2

0 0 0



 , L− = ~





0 0 0√
2 0 0

0
√

2 0



 ,

(9.30)



Rodolfo Russo - QMS - Notes 41

The three states in (9.28) form the so-called vector representation of the SO(3) rotation

group. Let us check that there is a direct relation between the matrices (9.30) and the

generators of the rotations as seen in (8.10). In order to see this let us introduce the

matrix

A =







1√
2

0 −1√
2

−i√
2

0 −i√
2

0 1 0






.

From eqs. (8.25), (8.26) and (8.27), we can see that A implements a change of basis

from the eigenvectors Y 1
1 to the standard cartesian basis where the first eigenfunction is

proportional to x and the remaining ones to y and z. In this basis the generators of the

rotation around z (Lz) takes a different form with the respect of (9.30)

Lz = A~





1 0 0

0 0 0

0 0 −1



A−1 = ~





0 i 0

−i 0 0

0 0 0



 . (9.31)

Similar relations hold for Lx and Ly showing that, in this basis, they form the standard

generators for the SO(3) rotation group (see the example 8.2.1).

Exercises.

[Op. ] One can follow a similar derivation also for the 5 eigenfunctions with j = 2.

Show that there is a one-to-one correspondence between these eigenfunctions and

the symmetric square matrices.

9.2 Spin 1/2 and SU(2) representations.

So far we have described particles through their position and momentum. Mathematically

these observables are related to two Hermitean operators x̂ and p̂ satisfying the canonical

commutation relations (5.4). Since, by hypothesis we are dealing with point-like object,

apparently there is no room for any other basic observable and one might think that all

other observables should be build by using x̂ and p̂. (For instance, the angular momentum

is given by (8.6), the Hamiltonian is give, in the free case, by Eq. (5.3)). However this is

not what happens in nature. On the contrary all known “matter” particles (such as the

electron, the muon, the quarks, the neutrinos) are not completly determined by specifying

their position14. It turns out that matter particles possess additional degrees of freedom

called “spin”. To be precise this means, for this particles we have the following properties:

14Of course in quantum mechanics specifying the position of the particle means that give a wavefunction

ψ(x) = 〈x|ψ〉.
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• The spin degrees of freedom are described by a triplet of operators Sx, Sy and Sz

satisfying the relations (8.7). A complete set of commuting operators (CSCO) is

given, for instance, by x̂, Sz and S2.

• The Hilbert space describing the state of the particle is the tensor product of the

Hilbert space Hx where x̂ and p̂ act and the Hilbert space HS where the Si act.

• Elementary matter particles with half-integer spin behave as fermions, while those

with integer spin behave as boson (and, as we have seen in the previous section

this affects the description of multiparticle systems!). For instance, for a spin 1/2

particle the only (eigen)value of S2 is 3~
2/4 corresponding to an eigenvalues s = 1/2.

This implies that HS is two dimensional and a basis for this space is given by

|s =
1

2
, m =

1

2
〉 , and |s =

1

2
, m = −1

2
〉 ,

where as in the previous section, the first and the second number indicate the

eigenvalues of S2 and Sz respectively.

9.2.1 Examples and exercises.

An explicit realization of HS is C2. As usual in the case of finite dimensional spaces, we

can realize any operator as a matrix. Conventionally the following choice is taken for the

spin operators: Sa = ~

2
σa, with a = 1, 2, 3 and

σ1 =

(

0 1

1 0

)

, σ2 =

(

0 −i

i 0

)

, σ3 =

(

1 0

0 −1

)

. (9.32)

These σ’s are called Pauli matrices. In this representation we have

|1
2
,
1

2
〉 ↔

(

1

0

)

, and |1
2
,−1

2
〉 ↔

(

0

1

)

. (9.33)

These two states are commonly indicated as “spin up” and “spin down” states.

Exercises.

• Check the following property of Pauli matrices

[σa, σb] = 2iǫabcσc , σaσb + σbσa = 2δab , (9.34)

• Show that

eiφσ2 =

(

cosφ sinφ

− sin φ cosφ

)

(9.35)
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9.3 Addition of two spins.

Consider now a two particle systems whose constituents have spin s(1) and s(2) respectively.

As we know, the Hilbert space describing the whole system is the tensor product of the

spaces describing the single constituents. In particular, we also need to consider the

tensor product of the spaces describing the spin: HS1 for the first particle and HS2 for

the second one. The total spin of the system is of course ~S = ~S1 + ~S2, where ~S1 acts only

on the first space H1 and ~S2 on the second one. Then also the components of ~S satisfy

the commutation relations (8.6) and so we we should be able to write the states of the

total system in terms of the eigenvectors derived in the previous section. The question

we want to address now is what are the eigenvalue for the total spin S2, if we know the

eigenvalue of each of the constituents. We have the following result:

If s1 and s2 indicate the spin quantum number of the constituents (that is S2
1

eigenvalue is ~
2s1(s1 + 1) and similarly for S2

2), then the possible eigenvalues

for the total spin S2 are s with |s1 − s2| ≤ s ≤ s1 + s2 and each eigenvalue

appears just as one multiplet (a set of 2s+ 1 values of Sz).

Let us work out explicitly the simple case of two objects having each one spin 1/2. For

instance consider an hydrogen atom: both the proton and the electron have spin 1/2 and

we would like to know the spin of the whole atom. The spin states

|↑, ↑〉 =

(

1

0

)

⊗
(

1

0

)

, |↑, ↓〉 =

(

1

0

)

⊗
(

0

1

)

, (9.36)

|↓, ↑〉 =

(

0

1

)

⊗
(

1

0

)

, |↓, ↓〉 =

(

0

1

)

⊗
(

0

1

)

,

where the first (second) entry refers to the the first (second) particle and we used ↑ in

order to indicate a state with the positive eigenvalue of Sz. Clearly the z-component of

the total spin of the state |↑, ↑〉 is ~ and thus it must represent the eigenvector |1, 1〉.
From this vector we can generate the other two states of the triplet with s = 1

|1, 0〉 =
1√
2

(

|↑, ↓〉 + |↓, ↑〉
)

, |1,−1〉 = |↓, ↓〉 . (9.37)

Finally the state |0, 0〉 must be the state with one spin up and one spin down that is

orthogonal to |1, 0〉 (since they have a different eigenvalue).

|0, 0〉 =
1√
2

(

|↑, ↓〉 − |↓, ↑〉
)

. (9.38)

This steps can be repeated in the case of general spins and yield to the result summarized

above.
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9.3.1 Examples and exercises.

Exercises.

• Consider a composite system with two particle of spin s1 and s2 respectively. What

is the dimension of the Hilbert space describing the spin degrees of freedom?

• Both the proton and the electron have spin 1/2. Is the hydrogen atom a boson or

a fermion ?

Legenda:

≡ “equivalent by definition”

∃ “exists at least one”

∃! “exists just one”

∀ “for all”

∈ “belongs to”

C the set of complex numbers

N the set of positive integer numbers

R the set of real numbers

Z the set of integer numbers

⊆ is contained in


