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4. POLARISATION. 

Plane polarised light  

Earlier, we considered one of the most useful solutions to the electromagnetic wave 

equation, the plane wave, travelling in the z direction, say. That is a transverse wave 

whose constant phase fronts are planes perpendicular to z, ie. the xy plane. We write the 

plane wave in one of two forms; 
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   (4.1a) 

 

or equivalently 

 

  tkzjexpA)t,z(E 0 


      (4.1b) 

 

We noted one important property of a wave, its phase and in the above case the phase is 

simply the argument of the cosinusoid or exponential, 

 

 tkz   

 

and this phase does not depend on x or y once z has been fixed, ie. the phase is the same 

at any value of x and y for a given value of z and t. 

 

The plane wave is usually represented with a diagram such as that shown below where 

horizontally either position (time constant) or time (position constant) is plotted and 

vertically the magnitude of the electric field is plotted. 
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So far we have ignored one very important property of the transverse plane wave. In 

equations 4.1 the amplitude of the wave is correctly written as a vector, 0A


. ie. the 

electric field possesses not only magnitude but direction. The vector E


will be lying 

somewhere in the xy plane for a wave propagating in the z direction ie. it has a 

polarisation. Furthermore, in general that direction may alter with time or position. In 

general a light source such as the sun or an incandescent light bulb continuously emits 

separate uncorrelated wave trains (in quantum transitions) that are independent of one 

another and the light produced is overall unpolarised.  

NB. For the light to acquire an overall polarisation the involvement of some 

polarising element or process is required.  

eg. It has already been noted in discussions around the Fresnel equations that the 

reflectivity or transmissivity depends on the polarisation of the light and two types of 

plane polarisation were introduced in that discussion in order to arrive at the equations, 

that is the Transverse Electric or TE polarisation and the Transverse Magnetic or TM 

polarisation which are mutually orthogonal and defined with respect to an interface 

(plane of incidence) between two dielectrics. It was noted that in an extreme case, at the 

Brewster angle the reflectivity of the TM polarisation went to zero leaving only the TE 

polarisation in the reflected wave. A dielectric orientated at the Brewster angle is an 

example of a polarising element. This is also the reason why light reflected from the 

surface of water at certain angles is polarised.  

 

In some special circumstances the polarisation state can be specified. We shall list these 

beginning with the simplest case. 

 

1. Plane Polarised electromagnetic waves where the polarisation 

direction is uniquely specified and is independent of time and position.  

For a wave travelling in a direction k the plane of polarisation is that defined by k and 

E.  

Recalling from earlier electromagnetism courses the superposition principle which 

states that if electric fields from two or more sources are present in the same region of 

space at the same time there is a net field that is found by the simple addition of the 

fields as vectors. 
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We have several simple situations of electrostatic fields to consider. 

 

 

 

 

 

 

 

The examples shown are of static fields where the two fields may or may not be in the 

same direction. This is simple vector addition but needs to be re-emphasised before 

continuing to look at further aspects of polarisation and of examining the superposition 

principle in general and how it determines the effects of interference and diffraction. 

Of more interest is to do the same vector additions with electric fields that vary in space 

or in time as a plane wave. 
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The first example to analyse is the case of two electromagnetic waves of the same 

amplitude, frequency and wavelength propagating in the same direction, say z and 

propagating in phase. One of the waves is plane polarised in the x direction and the 

other plane polarised in the y direction. The situation is depicted in the above diagrams 

along with the resultant field worked out at the peaks and troughs. We find that the 

resultant is again a plane polarised wave whose polarisation direction is oscillating at 

+45
0
 to the x and y axes. The amplitude of the resultant is 

  xyx EEEE 222       (4.2) 

If the amplitude of the two fields had been different then the wave would have remained 

plane polarised but at an angle 
x

y

E

E
1tan  to the x axis. 
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Another example, depicted above, similar to the first is that of two electromagnetic 

waves of the same amplitude, frequency and wavelength but of mutually orthogonal 

plane polarisation propagating in the same direction but with a phase lag 0180   

with respect to one another. The resultant field is shown again at the peaks and troughs. 

This is another plane polarised wave with its polarisation vector at -45
0
 to the x axis. 

We can also see this mathematically; 

 

In the first case with zero phase shift 

 

 tkzxEE xx  cos0


 

 tkzyEE yy  cos0


       (4.3) 

   tkzEyxE  cos0


 

 

NB. In Hecht the notation  is used for the phase lag, ie.   , here I use  for the 

phase generally. 

This is a field where the vector is  yx


  pointing in the direction at 45
0
 to the x (or y ) 

axis oscillating with a frequency  and a wavelength 
k




2
 . Note that the vector 

 yx


  pointing in a direction +45
0
 to the x axis is no longer a unit vector of magnitude 

1 but has magnitude 211 22   and therefore the amplitude of the resultant field in 

4.3 is 02E  where yx EEE 000   as stated. 

 

In the second case with  phase shift 0180  between x and y electric field 

components 

 

 tkzxEE xx  cos0


 

  tkzyEtkzyEtkzyEE yyy   cos)cos)cos( 000


  (4.4) 

   tkzEyxE  cos0


 

 

In this case the field vector is  yx


  and points in the direction at -45
0
 to the x axis. 
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It is not inevitably the case that the two orthogonal plane polarised and co-

propagating electric fields of the same frequency with different angles of polarisation 

will form a third plane polarised wave. We next look at other examples of resultant 

fields, that are the result of superposition of two orthogonal plane polarised waves, 

which are not themselves plane polarised. 

 

2. Circular Polarised Light. 
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In the above example the y plane polarised wave has a phase lag of 090
2




  

over the x plane polarised wave but the same amplitude and frequency/wavelength. 

Following the resultant field at each of the peaks and troughs leads to a direction of 

polarisation that rotates. This polarisation just described is known as right hand circular 

polarisation and is so named as it behaves like a right handed screw, looking back 

towards the source an observer sees the E field circulating clockwise. If, on the other 

hand, the y component had been leading the x component by 90
0
 , 

2


  , the 

polarisation would have rotated in the counter clockwise sense looking back towards the 

source, this being left hand circularly polarised light. 

 

We can describe this in mathematical terms by writing the two orthogonal fields as 

 

  tkzEE xx  cos0    

           (4.5a) 

    tkzEE yy cos0  

 

Where in the case we have just discussed, 000 EEE yx   and 
2


   

In this case  

  tkzEtkzEE yy 


 







 sin

2
cos 00     (4.5b) 

 

The sum of the two fields is then 

 

      tkzytkzxEE   sincos0


    (4.5c) 

 

We can recognise the meaning of 4.5c by considering the vector 

 

   sincos yxA


       (4.7) 
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which can be represented in the xy plane as a vector of length A at an angle  to the x 

axis as shown below. 

 

 

 

 

 

 

 

 

 

With tkz    we see by comparing 4.5c with 4.7 that 4.5c the resultant field 

represents a field with constant amplitude and a direction that rotates in a circular 

motion at a frequency . 

 

If the y plane polarised component  leads the x component by 90
0
 the resultant field is 

 

     tkzytkzxEE   sincos0


   (4.5d) 

 

Which is the left hand circularly polarised wave. 
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If we take a superposition of a right hand and a left hand circularly polarised wave we 

have 

 

         tkzytkzxEtkzytkzxEE   sincossincos 00


 

 

  )cos(2 0 tkzxEE 


      (4.8) 

 

ie. we have a plane polarised wave once again.. 

 

3. Elliptically Polarised Light. 

 

 

 

 

 

 

 

 

 

 

 

Of course the phase difference, , can take any value and the electric field amplitudes 

of the two orthogonal components may be different. In this more general case the 

resultant field will change amplitude and direction with time (or equivalently position) 

as it propagates. While the field vector traces an ellipse that may or may not be aligned 

with the x and y axes.  

In other words the two orthogonal fields we may write in their most general form 

 

 

  tkzEE xx  cos0       (4.9a) 

    tkzEE yy cos0      (4.9b) 
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NB. The values of amplitude, xE0  and yE0  and the phase   are three constants and 

we may relate the Ex field and the Ey field to one another at any instant in time and point 

in space in a straightforward manner as follows; 

 

The curve that the resultant E vector traces should not depend on either position or time. 

Using the trigonometric identity BABABA sinsincoscos)cos(   

 

We expand the Ey field 

 

   sin)sin(cos)cos(0 tkztkzEE yy    (4.10) 

 

The dimensionless y component is then; 

 

   sin)tkzsin(cos)tkzcos(
E

E

y0

y
  

 (4.10a) 

Also the dimensionless x component is; 

 

 )cos(
0

tkz
E

E

x

x        (4.11) 

 

Using 4.11 in the RHS of 4.10 and re-arranging 

 

  sin)sin(cos
0

tkz
E
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Using 4.11 and the trigonometric identity 1cossin 22  AA  
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and using 4.13 in 4.12 
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Or by re-arranging terms 
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The above equation does not involve z or t and is the equation of an ellipse that makes 

an angle  with the (x,y) co-ordinate system with; 

  cos
2

2tan
2
0

2
0

00

yx

yx

EE

EE


      (4.16) 

i) We may show it describes an ellipse 

We can more easily see that 4.15 is the equation of an ellipse if the phase shift  = 90
0
 

and cos = 0. This removes the cross product term and sin
2 = 1 
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4.17 is easily recognisable as an ellipse with axes, yx EE 00 ,  

ii) We may show that for  = /2 and equal amplitudes that it describes a 

circle 

If the amplitudes of the two orthogonal plane polarised waves were equal, 

000 EEE yx   then 4.17 becomes; 

 

 2
0

22 EEE yx         (4.18) 

 

This is the equation of a circle as previously encountered in the description of the 

circularly polarised light where  = 90
0
 and 000 EEE yx  . 
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iii) We may show that for  = 0 and equal amplitudes that it describes linear 

plane polarisation 

 

The above analysis means that if  = 0 in 4.15 we should recover a linear polarised 

wave. In this case cos 0 = 1 and sin 0 = 0 and inserting these values into 4.15 
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Or rewriting as a square and taking the square root 
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  or 
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E

E

0

0
     (4.21) 

 

The ratio of y component to x component is a constant independent of t or z and 4.21 

thus represents a linear plane polarisation with the angle of the electric field,  with 

respect to the x axis given by 

 

  
x

oy

E

E

0

tan         (4.22) 

 

Thus the elliptical polarisation state is the most general polarisation state with plane 

polarised and circularly polarised light being special examples of elliptically polarised 

light. 
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Birefringence 

In the earlier parts of the course we have considered the propagation of light in simple 

media after a consideration of propagation in vacuum and saw how the description 

needed modification. The modification required the introduction of optical properties 

for the medium namely; E ,  and n, electronic susceptibility, dielectric constant and 

refractive index respectively. We chose simple media, that is isotropic and 

homogeneous media and we found relationships amongst these material properties; 

 

EP E


0  

PEED


 00           (4.23) 

E 1  

  1n  

 

All of the above relationships apply for simple media but many materials are 

anisotropic, particularly crystalline materials where there is some ordering amongst the 

constituent atoms and the possibility arises that there is some anisotropy in the material 

properties, ie. their value depends on the orientation of the electric field associated with 

the light wave. 

To be able to observe the effects of polarisation as described to their fullest extent we 

need the electromagnetic field to be propagating in these more complex media where 

there may be for example anisotropy in the optical properties that were not encountered 

earlier. 

So far, in all that has preceded, it has been assumed that the refractive index of a medium 

is one scalar constant that is independent of the direction of polarisation of the 

electromagnetic wave whose velocity it modifies. In actuality n will be dependent on the 

direction of polarisation in most classes of solid except those that are amorphous or 

possess cubic symmetry. This property of solids is known as birefringence. A simple 

way of thinking about birefringence is to appreciate that the polarisation P induced by an 

electric field E (and consequently D = (0E + P ) will not necessarily be in the same 

direction as E. That is to say that we need to modify our view of the electronic 

susceptibility, a measure of the ease with which a material is polarised (ie charge 
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seperated). Previously, in the above equations, 4.23, it is considered  a scalar constant 

and the polarisation per unit volume P is in the same direction as the electric field E. 

More realistically we must treat E (and consequently,  and n) as a tensor reflecting the 

varying ease of polarisability (charge separation) in different directions in a material. 

This is most clearly demonstrated by an example where the effect is large. 

Polydiacetylene is a conjugated polymer which may be obtained as macroscopic single 

crystals where the polymer chains are all aligned. The chain is covalently bonded (as is 

Si) but the individual chains are held together by weak Van der Waals forces. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Charge is relatively easily seperated by an electric field applied along the polymer chain 

direction but far less readily seperated by a field perpendicular to the chain as electrons 

are strongly restricted to the chain they find themselves on and cannot move from one 

chain to another due to the interchain separation whereas they can readily move along 

the covalently bonded polymer chain and it is the charge displacement that gives rise to 

the polarisation. A little thought will show that a field, E. polarised at 45
0
 to the chains 

will have a large component of polarisation in the chain direction, due to the component 

of E in that direction, and virtually zero polarisation perpendicular. P is therefore almost 

entirely along the chain whilst E is at 45
0
 to the chain. The situation is depicted 

schematically below. 
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The above gives a physical example and description of the origin of birefringence. There 

is a small ammount of charge displacement, q from one chain to another and a much 

larger charge displacement Q on the chain as it is here that the charge is mobile. This 

results in a very small interchain polarisation p  and a large intrachain polarisation P. 

 

More formally the relation between polarisation and applied field must be written in 

tensor form : 

 zxzyxyxxxx EEEP   0  

 zyzyyyxyxy EEEP   0    (4.24) 

 zzzyzyxzxz EEEP   0  

 

where the ij  are the components of the susceptibility tensor.  

There exists a set of axes in any crystal called "the principle dielectric axes", x, y, z for 

which all but the diagonal components, ii , are zero. However for all but amorphous 

materials such as glasses and certain of those with cubic symmetry, the three remaining 

p=qdz dz Polarisation 

Electric Field 

+Q -Q -q 

+q Polymer chain 

Polymer chain 

P=Qx 

x 
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components xx  , yy  , and zz are not equal. This implies, as we have seen that P, E, 

and D are not in the same direction. It also has implications for propagation of an 

electromagnetic wave in such a medium. 

We noted earlier that there is a relationship between and n, 

 

   En  1     (4.25) 

 

In other words, for these anisotropic media the refractive index must also be represented 

by a tensor. If we have chosen the cartesian axes, x, y, z to be in the same direction as the 

principle dielectric axes there will be three principle values of refractive, nx , ny , and nz 

all of which may be different. Such behaviour is called birefringence and the implication 

is that light propagating within a birefringent medium will propagate at a velocity that 

depends on the direction of polarisation. For example plane polarised light, polarised in 

the x direction will have a phase velocity 
xn

c
v   etc.  

Recalling from earlier discussion that any polarisation state (circular, elliptical, plane) 

can be described as the sum of two orthogonal plane polarised states, we can now see the 

significance of that statement! We now discuss birefringence in more detail and see that 

it is necessary to consider any light wave to be split into orthogonal plane polarised 

components in order to describe its propagation in a birefringent medium. 

In general birefringent materials may be subdivided into two classes as follows. 

 

(i) Uniaxial materials where only one index, nz say, is different and nx = ny 

In this case nx = ny = no the ordinary refractive index and nz = ne the 

extraordinary refractive index. 

 

Such materials may be further subdivided into;  

positive uniaxial materials where no < ne , and the ordinary ray propagates at a 

higher velocity as a result 

and  

negative uniaxial materials where no > ne and it is the extraordinary ray that 

propagates at the higher velocity. 
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Two classic uniaxial birefringent materials are the minerals quartz where no = 1.5443 

and ne = 1.5534 with a birefringence value 0910.0 oe nnn  and calcite which is 

a negative uniaxial crystal with no = 1.6584 and ne = 1.4864 and its birefringence 

1720.0 oe nnn . 

The z direction in the above example ( oyx nnn   and oez nnn  ) is called the 

optic axis and is important because any wave travelling along the optic axis can only 

have field components which see an identical refractive index, nX = nY . It will then 

travel through the medium unchanged as far as its polarisation state is concerned. 

 

(ii) Biaxial materials where nX  nY  nZ . These will have two optic axes 

which are not the principle dielectric axes. They are a more difficult case to 

consider and are less frequent. 

 

We will be satisfied to limit ourselves to limit ourselves to the analysis of uniaxial 

crystals in what follows. 
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Uniaxial birefringence. 

Uniaxial materials have two defining refractive indices, nx = ny and nz known as the 

ordinary refractive index, no and the extraordinary refractive index, ne respectively.Any 

wave not propagating in the direction of the optic axis, ie. The z direction in this 

example, will split into two mutually orthogonal plane polarised waves with differing 

phase velocities known as the ordinary and the extraordinary waves. For any arbitrary 

propagation direction a construction called the index ellipsoid may be used in order to 

discover what happens. This is an ellipsoid constructed such that its semi-major/minor 

axes have lengths nx , ny  and nz and they are drawn below for positive and negative 

uniaxial materials. 

The electric field of a wave travelling in an arbitrary direction may for simplicity of 

analysis be considered as split into two plane polarised components; an ordinary wave 

polarised perpendicular to the optic axis, z, and an extraordinary wave polarised 

orthogonal to the ordinary wave. In a positive material the ordinary wave moves at a 

faster phase velocity than the extraordinary wave and vice versa for a negative material. 
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Consider first propagation along the optic axis of a positive uniaxial crystal as 

represented in the diagram. The large arrowed vector, OA, in the diagram indicates the 

direction of propagation and the polarisation components see a refractive index 

discovered by constructing a plane normal to that direction (the x-y plane) containing the 

origin. This makes a circular section through the ellipsoid whose radius is defined by n0 . 

Because that section of the ellipsoid is a circle any two orthogonal components will see a 

refractive index oyx nnn   and will travel with no change in phase. Such a situation, 

ie. propagation along the optic axis, gives rise to no unusual effects. Ie. our two 

orthogonal plane polarised components (that form any polarisation state) will retain any 

phase relationship they had possessed before entering the medium and the polarisation 

state will be left unaltered. Now consider the off axis propagation at an angle  to the 

optic axis as represented in the second diagram. The bold arrowed vector indicates the 

direction of propagation. To use the ellipsoid, a plane normal to this direction containing 

the origin is constructed. It intersects the ellipsoid to form an ellipse whose minor axis is 

n0  and whose major axis is ne(), a function of . These two refractive indices will be 

the refractive indices of the ordinary and extraordinary wave into which the original 



nX 

nZ 

nY 

Propagation along the  

optic axis 

nX 

nY 

nZ 

ne 

n0 

Propagation off axis 

OA 
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wave will split. The two orthogonal plane polarised components that describe the initial 

polarisation state will become those resolved along and perpendicular to the axes of the 

ellipse. In other words a point source radiating into the medium will split into an 

ordinary wave whose velocity is independent of direction and therefore spreads out as a 

circular wavefront, and an extraordinary wave whose velocity depends on as shown in 

the diagrams below. The ordinary and extraordinary wavefronts touch in the direction of 

the optic axis as shown. NB the O ray is polarised perpendicular to the optic axis. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

OA 

OA 

Propagation from a point source into a 
positive uniaxial crystal. The optic 
axis, OA, is perpendicular to the 

surface. 
 

Propagation from a point source into a 
positive uniaxial crystal. The optic 
axis, OA, is parallel to the surface. 
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Uniaxial birefringent materials may be useful in optical instruments as a means of 

altering the polarisation state of the light. One example of this will suffice to 

demonstrate the potential usefulness. 

The above diagram shows two orthogonal plane polarised electromagnetic waves 

incident on a birefringent medium from the left. The optic axis is in the x direction and 

therefore ex nn   and therefore the orthogonal polarisation oy nn  . Before entering 

the medium the two components are in phase and the resultant field will also be plane 

polarised at an angle of 45
0
 to the x and y axes as found in an earlier analysis. Once 

entered within the crystal however they each propagate at a different velocity and when 

emerging from the crystal after a path length L they will no longer be in phase. To 

understand this it is important to be clear about what the phase is. Recall that for a plane 

wave described by 

 

   )cos(0 tkzEE     (4.26) 

The phase,  , is  

 

   )( tkz        (4.27) 

 

nx = ne 

ny = no 

n = nx - ny 

EY 

EX 

0 

= 2/k0 

 = nk0L 
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In free space, light travels at a velocity c and there is a relation between  and  

 

   c      (4.28a) 

 

Once within the medium this velocity is altered as described by the refractive index and 

the relationship is now 

 

   
n

c
      (4.28b) 

 

The frequency on the LHS has not changed but the velocity on the RHS has become 

smaller. In fact the wavelength,  , is no longer the same. Writing the wavelength in 

free space as 0 once the plane wave is propagating in the medium the wavelength 

becomes 

   
n

0       (4.28c) 

Recalling the definition of the magnitude of the wavevector, 


2
k  , the wavevector in 

the medium is also altered when compared to the wavevector in free space, k0 . 

 

   0nkk       (4.29) 

 

In the birefringent medium we have different wavevectors for the x polarised wave and 

the y polarised wave and also different phases as a result 

 

   0knk xx     0knk yy   (4.30) 

The phases are then 

 

  tzknxx   0   tzknyy   0  (4.31) 

 

The phase difference is then 

 

    znkzknn yxyx 00    (4.32) 
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Thus on emerging from the crystal of length L the phase difference is 

 

  Lnk0       (4.33) 

 

As we have seen in an earlier section the light wave will in general be elliptically 

polarised when the two orthogonal plane polarised waves have a phase difference  as 

described by 4.15. 

There are interesting possibilities as we noted earlier. If the two orthogonal polarisations 

have a phase difference of  )12(  m  where m = 0, 1, 2…. the plane of 

polarisation of the resultant will be rotated by 90
0
 compared to where they are in phase. 

They are in phase at the input in the above example and therefore if 

Lnkm 0)12(    the plane of polarisation will be rotated through 90
0
. For a given 

wavelength (or wavevector) and a material with a given birefringence, n, the length of 

the crystal can be adjusted to satisfy the condition, ie. 

 

  
n

)m(

nk

)m(
L










2

1212 0

02





  (4.34) 

 

Such an arrangement is known as a half wave plate. It is important to note that this will 

only be a half wave plate for certain wavelengths that satisfy 4.34 and that the 

birefringent medium is able to transmit. 

Altering the thickness of the wave plate may introduce a phase difference 

2
12


 )m(   where m = 0, 1, 2 and this will cause a plane polarised input to 

become circularly polarised (and vice verca) when L is such that 

 

  
n

m

nk

m
L










4

)12(2
)12(

04





  (4.35) 

 

This is called a quarter wave plate. Again it is only a quarter wave plate for the set of 

wavelengths which satisfy 4.35 and for which the medium is transparent. 
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Transmission of polarised light through polariser 

It is useful to be able to calculate the amount of light in a given polarisation state that 

will be transmitted by a second polarising element (the analyser) set to transmit plane 

polarised light polarised in a particular sense wrt the plane of polarisation of the input 

light. 

 

 

 

 

 

 

 

 

 

 

 

 

We approach this problem by considering the particular arrangement shown above. This 

arrangement consists of ; 

 

i) A polarising element P1 that prepares light in a state of plane polarisation 

with the plane of polarisation in a particular direction. 

 

ii) A plate of birefringent material of thickness L will alter the polarisation state 

into a new polarisation state, after the light has traversed the plate, by 

introducing a phase lag, , between the two orthogonal plane polarised waves 

that constitute the original wave. 

 

iii) An analyser, P2 , is a second polarising element that will only pass light 

polarised in a plane orthogonal to that of the original polariser P1.  

 

We wish to know the fraction of the light intensity incident on the polariser P1 that is 

detected after it has traversed the whole system including P2. 

L 

ET 

E0 y 

x 

Polariser, P1 Analyser, P2 z 

Birefringent 

plate 

Detector, D 
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With no birefringent plate present the plane polarised light from P1 will be unchanged as 

far as its polarisaton state is concerned and hence no light will be transmitted by P2 

which is set orthogonal to the polariser, P1. The introduction of the birefringent plate will 

introduce a phase difference between the two orthogonal components that make up the 

original plane polarised wave, these two components being the ordinary and 

extraordinary waves plane polarised in the y and x directions respectively. 

 

 

 

 

 

 

 

 

 

The above diagram is invaluable in enabling us to visualise the components of the input 

and output electric fields, EI and ET in the x and y directions. With this pictorial 

representation the problem is straightforward to solve. 

Examination of the reference frame as shown above shows that to find ET after passage 

through the analyser requires addition of +ETx  and -ETy . (in contrast to the EI which 

requires +EIx and +EIy). Thus 

At the entry into the plate the plane waves for each component are 

 

   )cos(
2

0 tzk
E

E I
Ix   

 

   )cos(
2

0 tzk
E

E I
Iy   

 

As the input wave is plane polarised with an amplitude EI at 45
0
 to both x and y axes 

there are equal amplitudes for x and y components, 
2

IE
 . 

 

If we arbitrarily choose z = 0 at the input to the birefringent crystal. 

ETx 

ETy 

EIx EIy 
EI 

ET 

y x 
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Upon exiting the analyser, P2, the fields of each component are given by 

 

    tLkn
E

tLkn
E

E e
I

e
Ix

Tx   00 cos
2

)cos(
2

 

    tLkncos
E

)tLkncos(
E

E o
I

o
Iy

Ty   00
22

 

Where each component has suffered a phase change Lknex 0  and Lkny 00 . The 

resultant transmitted field is thus 

       tLkncostLkncos
E

E oe
I

T   00
2

  

NB. The x axis has been chosen to be the optic axis and light polarised in the x 

direction “sees” the extraordinary refractive index. 

Ie. after traversing the plate there is a phase difference given by 

 

    LnnLnk oeyx
0

0
2

)(



   

Using the trigonometric identity 
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Which we can rewrite more compactly using our expression for  as 

 

   
2

sin)
22

sin( 0

t
Lk

nn
EE oe

IT 


  

 

We find the output intensity IT  by finding the time average of the square of the electric 

field divided by impedance of free space, 0 giving; 
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NB. only one of the sinusoids (with the t in its argument) in the expression for ET has 

any time dependence and has time averaged to 
2

1  for the square of a sinusoid over 

many cycles as usual leaving the simple final expression. and the transmission of the 

system is then 
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Dichroism. 

a) Linear Dichroism 

After the recent discussion of anisotropic media and how this leads to birefringence, the 

possession of two refractive indices that describe propagation in the anisotropic medium 

for orthogonal plane polarised fields, it is possible to extend the description of 

anisotropy to describe materials where one plane polarisation state may be more 

strongly absorbed than its orthogonal partner. This is the origin of dichroism and the 

way that Polaroid plastic works. In the preceding discussion of birefringence we were 

interested in the light propagating in the medium where refraction is the dominant effect 

of the anisotropic medium away from frequencies that are strongly absorbed by the 

medium. However another interesting phenomenon of light propagating in a medium 

(solid, liquid or gas) is that at certain frequencies the light may be absorbed and the 

intensity fall as the light propagates through the medium.  

Generally, in a simple medium, as light propagates through it at frequencies that may be 

absorbed the intensity lost (amount of light energy absorbed) is proportional to the 

distance travelled, and the intensity available to be lost, ie. After travelling an 

infinitesimal distance dz the drop in intensity is proportional to dz and to the amount of 

intensity originally present and is thus given by 

 

IdzI    

 

where  is the constant of proportionality. We may re-arrange this equation to give 
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dz
I

dI
   

Integrating from z = 0 to L  

 

LzI

Ie zI
0

)(

0
log   

 

Evaluating, taking exponentials and rearranging 

 

)exp(0 LII   

 

This is known as Beers Law and  is the absorption coefficient.  

It is simple now to see that for anisotropic media the absorption coefficient will depend 

on the direction in which the electric field of the light wave is pointing, ie. on the plane 

of polarisation. The act of absorption, while a quantum event, can be thought of as the 

electrons in the medium moving in response to the electric field. They will find it easier 

to move in one direction rather than another, eg. reverting to our earlier example, along 

a polymer chain rather than perpendicular to it. This leads to preferential absorption for 

different plane polarisation states and the necessity to identify different absorption 

coefficients for different polarisations. This is known as linear Dichroism and is the 

basis for the most common polariser, the polaroid sheet, in which the material has been 

subject to stretching forces allowing the polymer chains that compose the plastic to 

align in a preferred direction ie the direction of the stress. Light that is plane polarised in 

this direction will be strongly absorbed whilst light polarised orthogonal to this 

alignment direction will be weakly absorbed , we thus define // and 
 
light plane 

polarised parallel to the direction of aligmment and perpendicular to the direction of 

alignment and // >> . 

 

b) Circular Dichroism 

It can also be the case that the left and right hand circularly polarised waves are 

absorbed to a different extent providing the molecule/substance doing the absorbing is 

able to exist in right handed and left handed forms known as enantiomers. Such 

molecules are inevitably possessing of chirality and their structures allow a left handed 



Electromagnetic Waves & Optics: Lecture Notes  ©Kevin Donovan 

 119 

and a right handed form of the molecule to be identified, This is common among 

biological molecules such as sugars and amino acids (and the proteins formed of amino 

acids). If a plane polarised wave enters a sugar solution, provided it is a pure enantiomer 

and made up of only one “handed” sugar, the two oppositely rotating circular 

polarisations that we have already seen can be thought of as composing the linearly 

polarised beam will be absorbed to differing extents and the right hand polarised beam 

being the more weakly absorbed will come to dominate the light wave changing from a 

plane polarised state to an elliptically polarised state. The polarisation is said to be 

rotated clockwise and the solution of sugar is dextrorotary (from the Latin for right) and 

if rotated counter clockwise the solution is laevo-rotatry. Hence the other name for 

glucose, dextrose). We have seen how this occurs where the amplitudes of the two plane 

polarisations are different in for example 4.15. 
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In Summary the most important things we need to know 

about polarisation states are; 

i) There are three polarisation states of importance 

a) Plane polarised light where the plane of polarisation is independent of 

position and time i.e. the electric field vector always points in the same 

direction as the wave propagates 

b) Circularly polarised light, where the plane of polarisation rotates about 

the axis of propagation at an angular frequency, , the same as the 

frequency of the light wave but the amplitude is fixed independent of time 

and position. We may speak of left and right circularly polarised light. 

c) Elliptically polarised light is the most general polarisation state and the 

others are limiting forms of the elliptically polarised state where both 

amplitude and direction may vary with time and position as the wave 

propagates. 

ii) All polarisation states may be described as composed of two orthogonal 

plane polarised waves. 

iii) One can change between polarisation states by changing the phase 

relationship between the orthogonal plane polarised states. 

iv) Birefringent crystals/materials will naturally separate the two orthogonal 

polarisations of an arbitrary polarisation states into an ordinary and an 

extraordinary plane polarised wave each of which travels with a different 

velocity. 

v) The ordinary refractive index, n0 ,  of a birefringent crystal is independent 

of the angle at which the wave propagates through the crystal wrt the 

optic axis whereas the extraordinary refractive index will depend on the 

angle ne() 


