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0.1 Revision from Geometry I

Recall that an m×n matrix A is a rectangular array of scalars (real numbers)a11 · · · a1n
...

...
am1 · · · amn

 .

We write A = (aij)m×n or simply A = (aij) to denote an m×n matrix whose
(i, j)-entry is aij, i.e. aij is the i-th row and in the j-th column.

If A = (aij)m×n we say that A has size m × n. An n × n matrix is said
to be square.

Example 0.1.1. If

A =

(
1 3 2
−2 4 0

)
,

then A is a matrix of size 2×3. The (1, 2)-entry of A is 3 and the (2, 3)-entry
of A is 0.

Definition 0.1.2 (Equality). Two matrices A and B are equal and we write
A = B if they have the same size and aij = bij where A = (aij) and B = (bij).

Definition 0.1.3 (Scalar multiplication). If A = (aij)m×n and α is a scalar,
then αA (the scalar product of α and A) is the m × n matrix whose
(i, j)-entry is αaij.

Definition 0.1.4 (Addition). If A = (aij)m×n and B = (bij)m×n then the
sum A+B of A and B is the m× n matrix whose (i, j)-entry is aij + bij.

Definition 0.1.5 (Zero matrix). We write Om×n or simply O (if the size is
clear from the context) for the m × n matrix all of whose entries are zero,
and call it a zero matrix.

Definition 0.1.6 (Matrix multplication). If A = (aij) is an m × n matrix
and B = (bij) is an n × p matrix then the product AB of A and B is the
m× p matrix C = (cij) with

cij =
n∑

k=1

aikbkj .
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Definition 0.1.7 (Identity matrix). An identity matrix I is a square ma-
trix with 1’s on the diagonal and zeros elsewhere. If we want to emphasise
its size we write In for the n× n identity matrix.

Matrix multiplication satisfies the following rules.

Theorem 0.1.8. Assume that α is a scalar and that A, B, and C are ma-
trices so that the indicated operations can be performed. Then:

(a) IA = A and BI = B;

(b) A(BC) = (AB)C;

(c) A(B + C) = AB + AC;

(d) (B + C)A = BA+ CA;

(e) α(AB) = (αA)B = A(αB).

Notation

• Since A(BC) = (AB)C, we can omit the brackets and simply write
ABC and similarly for products of more than three factors.

• If A is a square matrix we write Ak = AA · · ·A︸ ︷︷ ︸
k factors

for the k-th power of

A.

Warning: In general AB 6= BA!

Definition 0.1.9. If A and B are two matrices with AB = BA, then A and
B are said to commute.

Definition 0.1.10. If A is a square matrix, a matrix B is called an inverse
of A if

AB = I and BA = I .

A matrix that has an inverse is called invertible
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0.2 Transpose of a matrix

The first new concept we encounter is the following:

Definition 0.2.1. The transpose of an m× n matrix A = (aij) is the n×m
matrix B = (bij) given by

bij = aji

The transpose of A is denoted by AT .

Example 0.2.2.

(a) A =

(
1 2 3
4 5 6

)
⇒ AT =

1 4
2 5
3 6


(b) B =

(
1 2
3 −1

)
⇒ BT =

(
1 3
2 −1

)
Matrix transposition satisfies the following rules:

Theorem 0.2.3. Assume that α is a scalar and that A, B, and C are ma-
trices so that the indicated operations can be performed. Then:

(a) (AT )T = A;

(b) (αA)T = α(AT );

(c) (A+B)T = AT +BT ;

(d) (AB)T = BTAT .

Theorem 0.2.4. Let A be invertible. Then AT is invertible and

(AT )−1 = (A−1)T .

0.3 Special types of square matrices

In this section we briefly introduce a number of special classes of matrices
which will be studied in more detail later in this course.

Definition 0.3.1. A matrix is said to be symmetric if AT = A.
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Note that a symmetric matrix is necessarily square.

Example 0.3.2.

symmetric:

1 2 4
2 −1 3
4 3 0

 ,

(
5 2
2 −1

)
.

not symmetric:

2 2 4
2 2 3
1 3 5

 (
1 1 1
1 1 1

)
.

Definition 0.3.3. A square matrix A = (aij) is said to be
upper triangular if aij = 0 for i > j;
lower triangular if aij = 0 for i < j;
diagonal if aij = 0 for i 6= j.

If A = (aij) is a square matrix of size n× n, we call a11, a22, . . . , ann the
diagonal entries of A.

0.4 Linear systems in matrix notation

Let

Rn =



a1

a2
...
an


∣∣∣∣∣∣∣∣∣ a1, a2, · · · , an ∈ R

 .

Suppose we are given an m× n linear system

a11x1 + a12x2 + · · ·+ a1nxn = b1
a21x1 + a22x2 + · · ·+ a2nxn = b2

...
am1x1 + am2x2 + · · ·+ amnxn = bm

. (1)

We can reformulate this system into a single matrix equation.

Ax = b , (2)
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where

A =

a11 · · · a1n
...

...
am1 · · · amn

 , x =

x1
...
xn

 ∈ Rn , and b =

 b1
...
bm

 ∈ Rm ,

and where Ax is interpreted as the matrix product of A and x.

Lemma 0.4.1. Let A be an m × n matrix and let b ∈ Rm. Suppose that
M is an invertible m×m matrix. The following two systems have the same
solution set:

Ax = b (3)

MAx = Mb (4)

0.5 Elementary matrices and the Invertible

Matrix Theorem

Definition 0.5.1. An elementary matrix of type I (respectively, type
II, type III) is a matrix obtained by applying an elementary row operation
of type I (respectively, type II, type III) to an identity matrix.

Example 0.5.2.

type I: E1 =

0 1 0
1 0 0
0 0 1

 (take I3 and swap rows 1 and 2)

type II: E2 =

1 0 0
0 1 0
0 0 4

 (take I3 and multiply row 3 by 4)

type III: E3 =

1 0 2
0 1 0
0 0 1

 (take I3 and add 2 times row 3 to row 1)

Let us now consider the effect of left-multiplying an arbitrary 3×3 matrix
A in turn by each of the three elementary matrices given in the previous
example.
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Example 0.5.3. Let A = (aij)3×3 and let El (l = 1, 2, 3) be defined as in
the previous example. Then

E1A =

0 1 0
1 0 0
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a21 a22 a23

a11 a12 a13

a31 a32 a33

 ,

E2A =

1 0 0
0 1 0
0 0 4

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 a11 a12 a13

a21 a22 a23

4a31 4a32 4a33

 ,

E3A =

1 0 2
0 1 0
0 0 1

a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

a11 + 2a31 a12 + 2a32 a13 + 2a33

a21 a22 a23

a31 a32 a33

 .

Theorem 0.5.4. If E is an m × m elementary matrix obtained from I by
an elementary row operation, then left-multiplying an m× n matrix A by E
has the effect of performing that same row operation on A.

Theorem 0.5.5. If E is an elementary matrix, then E is invertible and E−1

is an elementary matrix of the same type.

Proof. The assertion follows from the previous theorem and the observation
that an elementary row operation can be reversed by an elementary row
operation of the same type. More precisely,

• if two rows of a matrix are interchanged, then interchanging them again
restores the original matrix;

• if a row is multiplied by α 6= 0, then multiplying the same row by 1/α
restores the original matrix;

• if α times row q has been added to row r, then adding −α times row q
to row r restores the original matrix.

Now, suppose that E was obtained from I by a certain row operation. Then,
as we just observed, there is another row operation of the same type that
changes E back to I. Thus there is an elementary matrix F of the same
type as E such that FE = I. A moment’s thought shows that EF = I as
well, since E and F correspond to reverse operations. All in all, we have now
shown that E is invertible and its inverse E−1 = F is an elementary matrix
of the same type.
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Example 0.5.6. Determine the inverses of the elementary matrices E1, E2,
and E3 in Example 0.5.2.

Solution. In order to transform E1 into I we need to swap rows 1 and 2 of
E1. The elementary matrix that performs this feat is

E−1
1 =

0 1 0
1 0 0
0 0 1

 .

Similarly, in order to transform E2 into I we need to multiply row 3 of E2

by 1
4
. Thus

E−1
2 =

1 0 0
0 1 0
0 0 1

4

 .

Finally, in order to transform E3 into I we need to add −2 times row 3 to
row 1, and so

E−1
3 =

1 0 −2
0 1 0
0 0 1

 .

Definition 0.5.7. A matrix B is row equivalent to a matrix A if there
exists a finite sequence E1, E2, . . . , Ek of elementary matrices such that

B = EkEk−1 · · ·E1A .

In other words, B is row equivalent to A if and only if B can be obtained
from A by a finite number of row operations.

The following properties of row equivalent matrices are easily established:

Remark 0.5.8. (a) A is row equivalent to itself;

(b) if A is row equivalent to B, then B is row equivalent to A;

(c) if A is row equivalent to B, and B is row equivalent to C, then A is
row equivalent to C.

Theorem 0.5.9 (Invertible Matrix Theorem). Let A be a square n× n ma-
trix. The following are equivalent:
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(a) A is invertible;

(b) Ax = 0 has only the trivial solution;

(c) A is row equivalent to I;

(d) A is a product of elementary matrices.

0.6 Gauss-Jordan inversion

The Invertible Matrix Theorem provides a simple method for inverting ma-
trices. Recall that the theorem states (amongst other things) that if A is
invertible, then A is row equivalent to I. Thus there is a sequence E1, . . . Ek

of elementary matrices such that

EkEk−1 · · ·E1A = I .

Multiplying both sides of the above equation by A−1 from the right yields

EkEk−1 · · ·E1 = A−1 ,

that is,
EkEk−1 · · ·E1I = A−1 .

Thus, the same sequence of elementary row operations that brings an invert-
ible matrix to I, will bring I to A−1. This gives a practical algorithm for
inverting matrices, known as Gauss-Jordan inversion.

Gauss-Jordan inversion

Bring the augmented matrix (A|I) to reduced row echelon form. If A is row
equivalent to I, then (A|I) is row equivalent to (I|A−1). Otherwise, A does
not have an inverse.

Example 0.6.1. Show that

A =

1 2 0
2 5 3
0 3 8


is invertible and compute A−1.
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Solution. Using Gauss-Jordan inversion we find1 2 0 1 0 0
2 5 3 0 1 0
0 3 8 0 0 1

 ∼ R2 − 2R1

1 2 0 1 0 0
0 1 3 −2 1 0
0 3 8 0 0 1


∼
R3 − 3R2

1 2 0 1 0 0
0 1 3 −2 1 0
0 0 −1 6 −3 1

 ∼
(−1)R3

1 2 0 1 0 0
0 1 3 −2 1 0
0 0 1 −6 3 −1


∼ R2 − 3R3

1 2 0 1 0 0
0 1 0 16 −8 3
0 0 1 −6 3 −1

 ∼ R1 − 2R2

1 0 0 −31 16 −6
0 1 0 16 −8 3
0 0 1 −6 3 −1

 .

Thus A is invertible (because it is row equivalent to I3) and

A−1 =

−31 16 −6
16 −8 3
−6 3 −1

 .


