0.1 Revision from Geometry I

Recall that an $m \times n$ matrix A is a rectangular array of scalars (real numbers)

$$
\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right)
$$

We write $A=\left(a_{i j}\right)_{m \times n}$ or simply $A=\left(a_{i j}\right)$ to denote an $m \times n$ matrix whose (i, j)-entry is $a_{i j}$, i.e. $a_{i j}$ is the i-th row and in the j-th column.

If $A=\left(a_{i j}\right)_{m \times n}$ we say that A has size $m \times n$. An $n \times n$ matrix is said to be square.

Example 0.1.1. If

$$
A=\left(\begin{array}{ccc}
1 & 3 & 2 \\
-2 & 4 & 0
\end{array}\right)
$$

then A is a matrix of size 2×3. The (1,2)-entry of A is 3 and the (2,3)-entry of A is 0 .

Definition 0.1.2 (Equality). Two matrices A and B are equal and we write $A=B$ if they have the same size and $a_{i j}=b_{i j}$ where $A=\left(a_{i j}\right)$ and $B=\left(b_{i j}\right)$.

Definition 0.1.3 (Scalar multiplication). If $A=\left(a_{i j}\right)_{m \times n}$ and α is a scalar, then αA (the scalar product of α and A) is the $m \times n$ matrix whose (i, j)-entry is $\alpha a_{i j}$.

Definition 0.1.4 (Addition). If $A=\left(a_{i j}\right)_{m \times n}$ and $B=\left(b_{i j}\right)_{m \times n}$ then the sum $A+B$ of A and B is the $m \times n$ matrix whose (i, j)-entry is $a_{i j}+b_{i j}$.

Definition 0.1.5 (Zero matrix). We write $O_{m \times n}$ or simply O (if the size is clear from the context) for the $m \times n$ matrix all of whose entries are zero, and call it a zero matrix.

Definition 0.1.6 (Matrix multplication). If $A=\left(a_{i j}\right)$ is an $m \times n$ matrix and $B=\left(b_{i j}\right)$ is an $n \times p$ matrix then the product $A B$ of A and B is the $m \times p$ matrix $C=\left(c_{i j}\right)$ with

$$
c_{i j}=\sum_{k=1}^{n} a_{i k} b_{k j} .
$$

Definition 0.1.7 (Identity matrix). An identity matrix I is a square matrix with 1's on the diagonal and zeros elsewhere. If we want to emphasise its size we write I_{n} for the $n \times n$ identity matrix.

Matrix multiplication satisfies the following rules.
Theorem 0.1.8. Assume that α is a scalar and that A, B, and C are matrices so that the indicated operations can be performed. Then:
(a) $I A=A$ and $B I=B$;
(b) $A(B C)=(A B) C$;
(c) $A(B+C)=A B+A C$;
(d) $(B+C) A=B A+C A$;
(e) $\alpha(A B)=(\alpha A) B=A(\alpha B)$.

Notation

- Since $A(B C)=(A B) C$, we can omit the brackets and simply write $A B C$ and similarly for products of more than three factors.
- If A is a square matrix we write $A^{k}=\underbrace{A A \cdots A}_{k \text { factors }}$ for the k-th power of A.

Warning: In general $A B \neq B A$!
Definition 0.1.9. If A and B are two matrices with $A B=B A$, then A and B are said to commute.

Definition 0.1.10. If A is a square matrix, a matrix B is called an inverse of A if

$$
A B=I \quad \text { and } \quad B A=I .
$$

A matrix that has an inverse is called invertible

0.2 Transpose of a matrix

The first new concept we encounter is the following:
Definition 0.2.1. The transpose of an $m \times n$ matrix $A=\left(a_{i j}\right)$ is the $n \times m$ matrix $B=\left(b_{i j}\right)$ given by

$$
b_{i j}=a_{j i}
$$

The transpose of A is denoted by A^{T}.

Example 0.2.2.

$$
\begin{aligned}
& \text { (a) } A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \Rightarrow A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) \\
& \text { (b) } B=\left(\begin{array}{cc}
1 & 2 \\
3 & -1
\end{array}\right) \Rightarrow B^{T}=\left(\begin{array}{cc}
1 & 3 \\
2 & -1
\end{array}\right)
\end{aligned}
$$

Matrix transposition satisfies the following rules:
Theorem 0.2.3. Assume that α is a scalar and that A, B, and C are matrices so that the indicated operations can be performed. Then:
(a) $\left(A^{T}\right)^{T}=A$;
(b) $(\alpha A)^{T}=\alpha\left(A^{T}\right)$;
(c) $(A+B)^{T}=A^{T}+B^{T}$;
(d) $(A B)^{T}=B^{T} A^{T}$.

Theorem 0.2.4. Let A be invertible. Then A^{T} is invertible and

$$
\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T} .
$$

0.3 Special types of square matrices

In this section we briefly introduce a number of special classes of matrices which will be studied in more detail later in this course.

Definition 0.3.1. A matrix is said to be symmetric if $A^{T}=A$.

Note that a symmetric matrix is necessarily square.

Example 0.3.2.

$$
\left.\begin{array}{c}
\text { symmetric: }\left(\begin{array}{ccc}
1 & 2 & 4 \\
2 & -1 & 3 \\
4 & 3 & 0
\end{array}\right), \\
\text { not symmetric: }\left(\begin{array}{ccc}
5 & 2 \\
2 & -1
\end{array}\right) . \\
2
\end{array} \begin{array}{lll}
2 & 3 \\
1 & 3 & 5
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 1 & 1 \\
1 & 1 & 1
\end{array}\right) . .
$$

Definition 0.3.3. A square matrix $A=\left(a_{i j}\right)$ is said to be
upper triangular if $a_{i j}=0$ for $i>j$;
lower triangular if $a_{i j}=0$ for $i<j$;
diagonal
if $a_{i j}=0$ for $i \neq j$.
If $A=\left(a_{i j}\right)$ is a square matrix of size $n \times n$, we call $a_{11}, a_{22}, \ldots, a_{n n}$ the diagonal entries of A.

0.4 Linear systems in matrix notation

Let

$$
\mathbb{R}^{n}=\left\{\left.\left(\begin{array}{c}
a_{1} \\
a_{2} \\
\vdots \\
a_{n}
\end{array}\right) \right\rvert\, a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R}\right\}
$$

Suppose we are given an $m \times n$ linear system

$$
\begin{array}{ccc}
a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n} & =b_{1} \\
a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n} & = & b_{2} \tag{1}\\
\vdots & & \\
a_{m 1} x_{1}+a_{m 2} x_{2}+\cdots+a_{m n} x_{n} & =b_{m}
\end{array} .
$$

We can reformulate this system into a single matrix equation.

$$
\begin{equation*}
A \mathbf{x}=\mathbf{b} \tag{2}
\end{equation*}
$$

where

$$
A=\left(\begin{array}{ccc}
a_{11} & \cdots & a_{1 n} \\
\vdots & & \vdots \\
a_{m 1} & \cdots & a_{m n}
\end{array}\right), \quad \mathbf{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{n}, \text { and } \mathbf{b}=\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{m}
\end{array}\right) \in \mathbb{R}^{m}
$$

and where $A \mathbf{x}$ is interpreted as the matrix product of A and \mathbf{x}.
Lemma 0.4.1. Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^{m}$. Suppose that M is an invertible $m \times m$ matrix. The following two systems have the same solution set:

$$
\begin{align*}
A \mathbf{x} & =\mathbf{b} \tag{3}\\
M A \mathbf{x} & =M \mathbf{b} \tag{4}
\end{align*}
$$

0.5 Elementary matrices and the Invertible Matrix Theorem

Definition 0.5.1. An elementary matrix of type I (respectively, type II, type III) is a matrix obtained by applying an elementary row operation of type I (respectively, type II, type III) to an identity matrix.

Example 0.5.2.

type I: $E_{1}=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ (take I_{3} and swap rows 1 and 2$)$
type II: $\quad E_{2}=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right) \quad$ (take I_{3} and multiply row 3 by 4)
type III: $\quad E_{3}=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \quad$ (take I_{3} and add 2 times row 3 to row 1)
Let us now consider the effect of left-multiplying an arbitrary 3×3 matrix A in turn by each of the three elementary matrices given in the previous example.

Example 0.5.3. Let $A=\left(a_{i j}\right)_{3 \times 3}$ and let $E_{l}(l=1,2,3)$ be defined as in the previous example. Then
$E_{1} A=\left(\begin{array}{lll}0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{lll}a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$,
$E_{2} A=\left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4\end{array}\right)\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 4 a_{31} & 4 a_{32} & 4 a_{33}\end{array}\right)$,
$E_{3} A=\left(\begin{array}{lll}1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right)\left(\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)=\left(\begin{array}{ccc}a_{11}+2 a_{31} & a_{12}+2 a_{32} & a_{13}+2 a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right)$.
Theorem 0.5.4. If E is an $m \times m$ elementary matrix obtained from I by an elementary row operation, then left-multiplying an $m \times n$ matrix A by E has the effect of performing that same row operation on A.

Theorem 0.5.5. If E is an elementary matrix, then E is invertible and E^{-1} is an elementary matrix of the same type.

Proof. The assertion follows from the previous theorem and the observation that an elementary row operation can be reversed by an elementary row operation of the same type. More precisely,

- if two rows of a matrix are interchanged, then interchanging them again restores the original matrix;
- if a row is multiplied by $\alpha \neq 0$, then multiplying the same row by $1 / \alpha$ restores the original matrix;
- if α times row q has been added to row r, then adding $-\alpha$ times row q to row r restores the original matrix.

Now, suppose that E was obtained from I by a certain row operation. Then, as we just observed, there is another row operation of the same type that changes E back to I. Thus there is an elementary matrix F of the same type as E such that $F E=I$. A moment's thought shows that $E F=I$ as well, since E and F correspond to reverse operations. All in all, we have now shown that E is invertible and its inverse $E^{-1}=F$ is an elementary matrix of the same type.

Example 0.5.6. Determine the inverses of the elementary matrices E_{1}, E_{2}, and E_{3} in Example 0.5.2.

Solution. In order to transform E_{1} into I we need to swap rows 1 and 2 of E_{1}. The elementary matrix that performs this feat is

$$
E_{1}^{-1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Similarly, in order to transform E_{2} into I we need to multiply row 3 of E_{2} by $\frac{1}{4}$. Thus

$$
E_{2}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & \frac{1}{4}
\end{array}\right)
$$

Finally, in order to transform E_{3} into I we need to add -2 times row 3 to row 1 , and so

$$
E_{3}^{-1}=\left(\begin{array}{ccc}
1 & 0 & -2 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Definition 0.5.7. A matrix B is row equivalent to a matrix A if there exists a finite sequence $E_{1}, E_{2}, \ldots, E_{k}$ of elementary matrices such that

$$
B=E_{k} E_{k-1} \cdots E_{1} A
$$

In other words, B is row equivalent to A if and only if B can be obtained from A by a finite number of row operations.

The following properties of row equivalent matrices are easily established: Remark 0.5.8. (a) A is row equivalent to itself;
(b) if A is row equivalent to B, then B is row equivalent to A;
(c) if A is row equivalent to B, and B is row equivalent to C, then A is row equivalent to C.

Theorem 0.5.9 (Invertible Matrix Theorem). Let A be a square $n \times n m a-$ trix. The following are equivalent:
(a) A is invertible;
(b) $A \mathbf{x}=\mathbf{0}$ has only the trivial solution;
(c) A is row equivalent to I;
(d) A is a product of elementary matrices.

0.6 Gauss-Jordan inversion

The Invertible Matrix Theorem provides a simple method for inverting matrices. Recall that the theorem states (amongst other things) that if A is invertible, then A is row equivalent to I. Thus there is a sequence $E_{1}, \ldots E_{k}$ of elementary matrices such that

$$
E_{k} E_{k-1} \cdots E_{1} A=I
$$

Multiplying both sides of the above equation by A^{-1} from the right yields

$$
E_{k} E_{k-1} \cdots E_{1}=A^{-1}
$$

that is,

$$
E_{k} E_{k-1} \cdots E_{1} I=A^{-1}
$$

Thus, the same sequence of elementary row operations that brings an invertible matrix to I, will bring I to A^{-1}. This gives a practical algorithm for inverting matrices, known as Gauss-Jordan inversion.

Gauss-Jordan inversion

Bring the augmented matrix $(A \mid I)$ to reduced row echelon form. If A is row equivalent to I, then $(A \mid I)$ is row equivalent to $\left(I \mid A^{-1}\right)$. Otherwise, A does not have an inverse.

Example 0.6.1. Show that

$$
A=\left(\begin{array}{lll}
1 & 2 & 0 \\
2 & 5 & 3 \\
0 & 3 & 8
\end{array}\right)
$$

is invertible and compute A^{-1}.

Solution. Using Gauss-Jordan inversion we find

$$
\begin{aligned}
& \left(\begin{array}{lll|lll}
1 & 2 & 0 & 1 & 0 & 0 \\
2 & 5 & 3 & 0 & 1 & 0 \\
0 & 3 & 8 & 0 & 0 & 1
\end{array}\right) \sim R_{2}-2 R_{1}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 3 & -2 & 1 & 0 \\
0 & 3 & 8 & 0 & 0 & 1
\end{array}\right) \\
& \sim R_{3}-3 R_{2}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 3 & -2 & 1 & 0 \\
0 & 0 & -1 & 6 & -3 & 1
\end{array}\right) \sim(-1) R_{3}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 3 & -2 & 1 & 0 \\
0 & 0 & 1 & -6 & 3 & -1
\end{array}\right) \\
& \sim R_{2}-3 R_{3}\left(\begin{array}{ccc|ccc}
1 & 2 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 16 & -8 & 3 \\
0 & 0 & 1 & -6 & 3 & -1
\end{array}\right) \sim R_{1}-2 R_{2}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & -31 & 16 & -6 \\
0 & 1 & 0 & 16 & -8 & 3 \\
0 & 0 & 1 & -6 & 3 & -1
\end{array}\right) .
\end{aligned}
$$

Thus A is invertible (because it is row equivalent to I_{3}) and

$$
A^{-1}=\left(\begin{array}{ccc}
-31 & 16 & -6 \\
16 & -8 & 3 \\
-6 & 3 & -1
\end{array}\right)
$$

