0.1 Revision from Geometry I

Recall that an $m \times n$ matrix A is a rectangular array of scalars (real numbers)

$$\begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}$$

We write $A = (a_{ij})_{m \times n}$ or simply $A = (a_{ij})$ to denote an $m \times n$ matrix whose (i, j)-entry is a_{ij} , i.e. a_{ij} is the *i*-th row and in the *j*-th column.

If $A = (a_{ij})_{m \times n}$ we say that A has size $m \times n$. An $n \times n$ matrix is said to be square.

Example 0.1.1. If

$$A = \begin{pmatrix} 1 & 3 & 2 \\ -2 & 4 & 0 \end{pmatrix} \,,$$

then A is a matrix of size 2×3 . The (1, 2)-entry of A is 3 and the (2, 3)-entry of A is 0.

Definition 0.1.2 (Equality). Two matrices A and B are equal and we write A = B if they have the same size and $a_{ij} = b_{ij}$ where $A = (a_{ij})$ and $B = (b_{ij})$.

Definition 0.1.3 (Scalar multiplication). If $A = (a_{ij})_{m \times n}$ and α is a scalar, then αA (the scalar product of α and A) is the $m \times n$ matrix whose (i, j)-entry is αa_{ij} .

Definition 0.1.4 (Addition). If $A = (a_{ij})_{m \times n}$ and $B = (b_{ij})_{m \times n}$ then the sum A + B of A and B is the $m \times n$ matrix whose (i, j)-entry is $a_{ij} + b_{ij}$.

Definition 0.1.5 (Zero matrix). We write $O_{m \times n}$ or simply O (if the size is clear from the context) for the $m \times n$ matrix all of whose entries are zero, and call it a **zero matrix**.

Definition 0.1.6 (Matrix multiplication). If $A = (a_{ij})$ is an $m \times n$ matrix and $B = (b_{ij})$ is an $n \times p$ matrix then the **product** AB of A and B is the $m \times p$ matrix $C = (c_{ij})$ with

$$c_{ij} = \sum_{k=1}^{n} a_{ik} b_{kj} \, .$$

Definition 0.1.7 (Identity matrix). An **identity matrix** I is a square matrix with 1's on the diagonal and zeros elsewhere. If we want to emphasise its size we write I_n for the $n \times n$ identity matrix.

Matrix multiplication satisfies the following rules.

Theorem 0.1.8. Assume that α is a scalar and that A, B, and C are matrices so that the indicated operations can be performed. Then:

- (a) IA = A and BI = B;
- (b) A(BC) = (AB)C;
- (c) A(B+C) = AB + AC;
- (d) (B+C)A = BA + CA;
- (e) $\alpha(AB) = (\alpha A)B = A(\alpha B).$

Notation

- Since A(BC) = (AB)C, we can omit the brackets and simply write ABC and similarly for products of more than three factors.
- If A is a square matrix we write $A^k = \underbrace{AA \cdots A}_{k \text{ factors}}$ for the k-th power of

Α.

Warning: In general
$$AB \neq BA$$
!

Definition 0.1.9. If A and B are two matrices with AB = BA, then A and B are said to commute.

Definition 0.1.10. If A is a square matrix, a matrix B is called an *inverse* of A if

$$AB = I$$
 and $BA = I$.

A matrix that has an inverse is called **invertible**

0.2 Transpose of a matrix

The first new concept we encounter is the following:

Definition 0.2.1. The *transpose* of an $m \times n$ matrix $A = (a_{ij})$ is the $n \times m$ matrix $B = (b_{ij})$ given by

$$b_{ij} = a_{ji}$$

The transpose of A is denoted by A^T .

Example 0.2.2.

(a)
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \Rightarrow A^T = \begin{pmatrix} 1 & 4 \\ 2 & 5 \\ 3 & 6 \end{pmatrix}$$

(b) $B = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \Rightarrow B^T = \begin{pmatrix} 1 & 3 \\ 2 & -1 \end{pmatrix}$

Matrix transposition satisfies the following rules:

Theorem 0.2.3. Assume that α is a scalar and that A, B, and C are matrices so that the indicated operations can be performed. Then:

(a) $(A^T)^T = A;$ (b) $(\alpha A)^T = \alpha (A^T);$

(c)
$$(A+B)^T = A^T + B^T;$$

 $(d) \ (AB)^T = B^T A^T.$

Theorem 0.2.4. Let A be invertible. Then A^T is invertible and

$$(A^T)^{-1} = (A^{-1})^T$$
.

0.3 Special types of square matrices

In this section we briefly introduce a number of special classes of matrices which will be studied in more detail later in this course.

Definition 0.3.1. A matrix is said to be symmetric if $A^T = A$.

Note that a symmetric matrix is necessarily square.

Example 0.3.2.

symmetric:
$$\begin{pmatrix} 1 & 2 & 4 \\ 2 & -1 & 3 \\ 4 & 3 & 0 \end{pmatrix}$$
, $\begin{pmatrix} 5 & 2 \\ 2 & -1 \end{pmatrix}$.
not symmetric: $\begin{pmatrix} 2 & 2 & 4 \\ 2 & 2 & 3 \\ 1 & 3 & 5 \end{pmatrix}$, $\begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$

Definition 0.3.3. A square matrix $A = (a_{ij})$ is said to be **upper triangular** if $a_{ij} = 0$ for i > j; **lower triangular** if $a_{ij} = 0$ for i < j; **diagonal** if $a_{ij} = 0$ for $i \neq j$.

If $A = (a_{ij})$ is a square matrix of size $n \times n$, we call $a_{11}, a_{22}, \ldots, a_{nn}$ the **diagonal entries** of A.

0.4 Linear systems in matrix notation

Let

$$\mathbb{R}^{n} = \left\{ \left. \begin{pmatrix} a_{1} \\ a_{2} \\ \vdots \\ a_{n} \end{pmatrix} \right| a_{1}, a_{2}, \cdots, a_{n} \in \mathbb{R} \right\}.$$

Suppose we are given an $m \times n$ linear system

$$\begin{array}{rcl}
a_{11}x_1 + a_{12}x_2 + \dots + a_{1n}x_n &= b_1 \\
a_{21}x_1 + a_{22}x_2 + \dots + a_{2n}x_n &= b_2 \\
&\vdots & & & \\
a_{m1}x_1 + a_{m2}x_2 + \dots + a_{mn}x_n &= b_m
\end{array}$$
(1)

We can reformulate this system into a single matrix equation.

$$A\mathbf{x} = \mathbf{b}\,,\tag{2}$$

where

$$A = \begin{pmatrix} a_{11} & \cdots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \cdots & a_{mn} \end{pmatrix}, \quad \mathbf{x} = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} \in \mathbb{R}^n, \text{ and } \mathbf{b} = \begin{pmatrix} b_1 \\ \vdots \\ b_m \end{pmatrix} \in \mathbb{R}^m,$$

and where $A\mathbf{x}$ is interpreted as the matrix product of A and \mathbf{x} .

Lemma 0.4.1. Let A be an $m \times n$ matrix and let $\mathbf{b} \in \mathbb{R}^m$. Suppose that M is an invertible $m \times m$ matrix. The following two systems have the same solution set:

$$A\mathbf{x} = \mathbf{b} \tag{3}$$

$$MA\mathbf{x} = M\mathbf{b} \tag{4}$$

0.5 Elementary matrices and the Invertible Matrix Theorem

Definition 0.5.1. An **elementary matrix** of **type I** (respectively, **type II**, **type III**) is a matrix obtained by applying an elementary row operation of type I (respectively, type II, type III) to an identity matrix.

Example 0.5.2.

type I:
$$E_1 = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
 (take I_3 and swap rows 1 and 2)
type II: $E_2 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix}$ (take I_3 and multiply row 3 by 4)
type III: $E_3 = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$ (take I_3 and add 2 times row 3 to row 1)

Let us now consider the effect of left-multiplying an arbitrary 3×3 matrix A in turn by each of the three elementary matrices given in the previous example.

Example 0.5.3. Let $A = (a_{ij})_{3\times 3}$ and let E_l (l = 1, 2, 3) be defined as in the previous example. Then

$$E_{1}A = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{21} & a_{22} & a_{23} \\ a_{11} & a_{12} & a_{13} \\ a_{31} & a_{32} & a_{33} \end{pmatrix},$$

$$E_{2}A = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 4 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ 4a_{31} & 4a_{32} & 4a_{33} \end{pmatrix},$$

$$E_{3}A = \begin{pmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix} = \begin{pmatrix} a_{11} + 2a_{31} & a_{12} + 2a_{32} & a_{13} + 2a_{33} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Theorem 0.5.4. If E is an $m \times m$ elementary matrix obtained from I by an elementary row operation, then left-multiplying an $m \times n$ matrix A by Ehas the effect of performing that same row operation on A.

Theorem 0.5.5. If E is an elementary matrix, then E is invertible and E^{-1} is an elementary matrix of the same type.

Proof. The assertion follows from the previous theorem and the observation that an elementary row operation can be reversed by an elementary row operation of the same type. More precisely,

- if two rows of a matrix are interchanged, then interchanging them again restores the original matrix;
- if a row is multiplied by $\alpha \neq 0$, then multiplying the same row by $1/\alpha$ restores the original matrix;
- if α times row q has been added to row r, then adding $-\alpha$ times row q to row r restores the original matrix.

Now, suppose that E was obtained from I by a certain row operation. Then, as we just observed, there is another row operation of the same type that changes E back to I. Thus there is an elementary matrix F of the same type as E such that FE = I. A moment's thought shows that EF = I as well, since E and F correspond to reverse operations. All in all, we have now shown that E is invertible and its inverse $E^{-1} = F$ is an elementary matrix of the same type.

Example 0.5.6. Determine the inverses of the elementary matrices E_1 , E_2 , and E_3 in Example 0.5.2.

Solution. In order to transform E_1 into I we need to swap rows 1 and 2 of E_1 . The elementary matrix that performs this feat is

$$E_1^{-1} = \begin{pmatrix} 0 & 1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Similarly, in order to transform E_2 into I we need to multiply row 3 of E_2 by $\frac{1}{4}$. Thus

$$E_2^{-1} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & \frac{1}{4} \end{pmatrix} \,.$$

Finally, in order to transform E_3 into I we need to add -2 times row 3 to row 1, and so

$$E_3^{-1} = \begin{pmatrix} 1 & 0 & -2 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} \,.$$

Definition 0.5.7. A matrix B is **row equivalent** to a matrix A if there exists a finite sequence E_1, E_2, \ldots, E_k of elementary matrices such that

$$B = E_k E_{k-1} \cdots E_1 A.$$

In other words, B is row equivalent to A if and only if B can be obtained from A by a finite number of row operations.

The following properties of row equivalent matrices are easily established:

Remark 0.5.8. (a) A is row equivalent to itself;

- (b) if A is row equivalent to B, then B is row equivalent to A;
- (c) if A is row equivalent to B, and B is row equivalent to C, then A is row equivalent to C.

Theorem 0.5.9 (Invertible Matrix Theorem). Let A be a square $n \times n$ matrix. The following are equivalent:

- (a) A is invertible;
- (b) $A\mathbf{x} = \mathbf{0}$ has only the trivial solution;
- (c) A is row equivalent to I;
- (d) A is a product of elementary matrices.

0.6 Gauss-Jordan inversion

The Invertible Matrix Theorem provides a simple method for inverting matrices. Recall that the theorem states (amongst other things) that if A is invertible, then A is row equivalent to I. Thus there is a sequence E_1, \ldots, E_k of elementary matrices such that

$$E_k E_{k-1} \cdots E_1 A = I$$
.

Multiplying both sides of the above equation by A^{-1} from the right yields

$$E_k E_{k-1} \cdots E_1 = A^{-1} ,$$

that is,

$$E_k E_{k-1} \cdots E_1 I = A^{-1}$$

Thus, the same sequence of elementary row operations that brings an invertible matrix to I, will bring I to A^{-1} . This gives a practical algorithm for inverting matrices, known as Gauss-Jordan inversion.

Gauss-Jordan inversion

Bring the augmented matrix (A|I) to reduced row echelon form. If A is row equivalent to I, then (A|I) is row equivalent to $(I|A^{-1})$. Otherwise, A does not have an inverse.

Example 0.6.1. Show that

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 2 & 5 & 3 \\ 0 & 3 & 8 \end{pmatrix}$$

is invertible and compute A^{-1} .

Solution. Using Gauss-Jordan inversion we find

$$\begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 2 & 5 & 3 & | & 0 & 1 & 0 \\ 0 & 3 & 8 & | & 0 & 0 & 1 \end{pmatrix} \sim R_2 - 2R_1 \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & -2 & 1 & 0 \\ 0 & 3 & 8 & | & 0 & 0 & 1 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & -2 & 1 & 0 \\ 0 & 0 & -1 & | & 6 & -3 & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 3 & | & -2 & 1 & 0 \\ 0 & 0 & 1 & | & -6 & 3 & -1 \end{pmatrix}$$
$$\sim R_2 - 3R_3 \begin{pmatrix} 1 & 2 & 0 & | & 1 & 0 & 0 \\ 0 & 1 & 0 & | & 16 & -8 & 3 \\ 0 & 0 & 1 & | & -6 & 3 & -1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & 0 & | & -31 & 16 & -6 \\ 0 & 1 & 0 & | & 16 & -8 & 3 \\ 0 & 0 & 1 & | & -6 & 3 & -1 \end{pmatrix}$$

Thus A is invertible (because it is row equivalent to I_3) and

$$A^{-1} = \begin{pmatrix} -31 & 16 & -6\\ 16 & -8 & 3\\ -6 & 3 & -1 \end{pmatrix} \,.$$