
1

0.1 Determinants

Let A = (aij) be a 2×2 matrix. Recall that the determinant of A was defined
by

det(A) =

∣∣∣∣a11 a12
a21 a22

∣∣∣∣ = a11a22 − a21a12 . (1)

Notation 0.1.1. For any n × n matrix A, let Aij denote the submatrix
formed by deleting the i-th row and the j-th column of A. We call Aij the
(i, j)-minor of A.

Warning: This notation differs from the one used in the course text

Example 0.1.2. If

A =


3 2 5 −1
−2 9 0 6
7 −2 −3 1
4 −5 8 −4

 ,

then

A23 =

3 2 −1
7 −2 1
4 −5 −4

 .

Definition 0.1.3. Let A = (aij) be an n×n matrix. The determinant of A,
written det(A), is defined as follows:

• If n = 1, then det(A) = a11.

• If n > 1 then det(A) is the sum of n terms of the form ±ai1 det(Ai1),
with plus and minus signs alternating, and where the entries a11, a21, . . . , an1
are from the first column of A. In symbols:

det(A) = a11 det(A11)− a21 det(A21) + · · ·+ (−1)n+1an1 det(An1)

=
n∑

i=1

(−1)i+1ai1 det(Ai1) .
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Example 0.1.4. Compute the determinant of

A =


0 0 7 −5
−2 9 6 −8
0 0 −3 2
0 3 −1 4

 .

Solution.∣∣∣∣∣∣∣∣
0 0 7 −5
−2 9 6 −8
0 0 −3 2
0 3 −1 4

∣∣∣∣∣∣∣∣ = −(−2)

∣∣∣∣∣∣
0 7 −5
0 −3 2
3 −1 4

∣∣∣∣∣∣ = 2·3
∣∣∣∣ 7 −5
−3 2

∣∣∣∣ = 2·3·[7·2−(−3)·(−5)] = −6 .

Definition 0.1.5. Given a square matrix A = (aij), the (i, j)-cofactor of
A is the number Cij defined by

Cij = (−1)i+j det(Aij) .

Thus, the definition of det(A) reads

det(A) = a11C11 + a21C21 + · · ·+ an1Cn1.

This is called the cofactor expansion down the first column of A.

Theorem 0.1.6 (Cofactor Expansion Theorem). The determinant of an n×
n matrix A can be computed by a cofactor expansion across any column or
row. The expansion down the j-th column is

det(A) = a1jC1j + a2jC2j + · · ·+ anjCnj

and the cofactor expansion across the i-th row is

det(A) = ai1Ci1 + ai2Ci2 + · · ·+ ainCin .

Example 0.1.7. Use a cofactor expansion across the second row to compute
det(A), where

A =

4 −1 3
0 0 2
1 0 7

 .
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Solution.

det(A) = a21C21 + a22C22 + a23C23

= (−1)2+1a21 det(A21) + (−1)2+2a22 det(A22) + (−1)2+3a23 det(A23)

= −0

∣∣∣∣−1 3
0 7

∣∣∣∣+ 0

∣∣∣∣4 3
1 7

∣∣∣∣− 2

∣∣∣∣4 −1
1 0

∣∣∣∣
= −2[4 · 0− 1 · (−1)] = −2 .

Theorem 0.1.8. If A is either an upper or a lower triangular matrix, then
det(A) is the product of the diagonal entries of A.

0.2 Properties of determinants

Theorem 0.2.1. Let A be an n× n matrix.

(a) If two rows of A are interchanged to produce B, then det(B) = − det(A).

(b) If one row of A is multiplied by α to produce B, then det(B) = α det(A).

(c) If a multiple of one row of A is added to another row to produce a
matrix B then det(B) = det(A).

Example 0.2.2. Compute ∣∣∣∣∣∣∣∣
3 −1 2 −5
0 5 −3 −6
−6 7 −7 4
−5 −8 0 9

∣∣∣∣∣∣∣∣ .
Solution. Perhaps the easiest way to compute this determinant is to spot
that when adding two times row 1 to row 3 we get two identical rows, which,
by another application of the previous theorem, implies that the determinant
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is zero: ∣∣∣∣∣∣∣∣
3 −1 2 −5
0 5 −3 −6
−6 7 −7 4
−5 −8 0 9

∣∣∣∣∣∣∣∣ =
R3 + 2R1

∣∣∣∣∣∣∣∣
3 −1 2 −5
0 5 −3 −6
0 5 −3 −6
−5 −8 0 9

∣∣∣∣∣∣∣∣
=
R3 −R2

∣∣∣∣∣∣∣∣
3 −1 2 −5
0 5 −3 −6
0 0 0 0
−5 −8 0 9

∣∣∣∣∣∣∣∣ = 0 ,

by a cofactor expansion across the third row.

Theorem 0.2.3. A matrix A is invertible if and only if det(A) 6= 0.

Definition 0.2.4. A square matrix A is called singular if det(A) = 0.
Otherwise it is said to be nonsingular.

Corollary 0.2.5. A matrix is invertible if and only if it is nonsingular

Theorem 0.2.6. If A is an n× n matrix, then det(A) = det(AT ).

Proof. We prove by induction. The statement is clearly true for 2×2 matrices
A. Suppose the statement is true for k× k matrices A. This is the Inductive
Hypothesis. We show that the statement is also true for (k + 1) × (k + 1)-
matrices A.

We fix some notation first. Write A = (aij), A
T = (atij) with atij = aji.

Observe that
Aij = (AT

ji)
T .

Now let A be a (k + 1)× (k + 1)-matrix. Then we have

detA =
k+1∑
j=1

aij(−1)i+j detAij =
k+1∑
j=1

aij(−1)i+j det(AT
ji)

T

=
k+1∑
j=1

aij(−1)i+j detAT
ji (by Inductive Hypothesis since AT

ji is k × k)

=
k+1∑
j=1

atji(−1)j+i detAT
ji

= detAT .
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By the previous theorem, each statement of the theorem on the behaviour
of determinants under row operations (Theorem 0.2.1) is also true if the word
‘row’ is replaced by ‘column’, since a row operation on AT amounts to a
column operation on A.

Theorem 0.2.7. Let A be a square matrix.

(a) If two columns of A are interchanged to produce B, then det(B) =
− det(A).

(b) If one column of A is multiplied by α to produce B, then det(B) =
α det(A).

(c) If a multiple of one column of A is added to another column to produce
a matrix B then det(B) = det(A).

Theorem 0.2.8. If A is an n×n matrix and E an elementary n×n matrix,
then

det(EA) = det(E) det(A)

with

det(E) =


−1 if E is of type I (interchanging two rows)

α if E is of type II (multiplying a row by α)

1 if E is of type III (adding a multiple of one row to another)

.

Theorem 0.2.9. If A and B are square matrices of the same size, then

det(AB) = det(A) det(B) .

Proof. Case I: IfA is not invertible, then neither isAB, for otherwiseA(B(AB)−1) =
I. Thus, by Theorem 0.2.3,

det(AB) = 0 = 0 · det(B) = det(A) det(B) .

Case II: If A is invertible, then by the Invertible Matrix Theorem A is
a product of elementary matrices, that is, there exist elementary matrices
E1, . . . , Ek, such that

A = EkEk−1 · · ·E1 .
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For brevity, write |A| for det(A). Then, by the previous theorem,

|AB| = |Ek · · ·E1B| = |Ek||Ek−1 · · ·E1B| = . . .

= |Ek| · · · |E1||B| = . . . = |Ek · · ·E1||B|
= |A||B| .

Let Cij be the (i, j)-cofactor of an n×nmatrix A. We define the adjugate
of A, denoted by adjA, to be the following matrix of cofactors (note that the
order of the indices is reversed!) :

adjA = (Cji) =


C11 C21 · · · Cn1

C12 C22 · · · Cn2
...

...
. . .

...
C1n C2n · · · Cnn

 (2)

Theorem 0.2.10 (Inverse Formula). Let A be an n× n matrix. Then

A(adjA) = (detA)I

where I is the identity matrix. Further, if A is invertible, then

A−1 =
1

det(A)
adj (A) .

Example 0.2.11. Find the inverse of the following matrix using the Inverse
Formula

A =

 1 3 −1
−2 −6 0
1 4 −3

 .

Proof. First we need to calculate the 9 cofactors of A:

C11 = +

∣∣∣∣−6 0
4 −3

∣∣∣∣ = 18 , C12 = −
∣∣∣∣−2 0

1 −3

∣∣∣∣ = −6 , C13 = +

∣∣∣∣−2 −6
1 4

∣∣∣∣ = −2 ,

C21 = −
∣∣∣∣3 −1
4 −3

∣∣∣∣ = 5 , C22 = +

∣∣∣∣1 −1
1 −3

∣∣∣∣ = −2 , C23 = −
∣∣∣∣1 3
1 4

∣∣∣∣ = −1 ,

C31 = +

∣∣∣∣ 3 −1
−6 0

∣∣∣∣ = −6 , C32 = −
∣∣∣∣ 1 −1
−2 0

∣∣∣∣ = 2 , C33 = +

∣∣∣∣ 1 3
−2 −6

∣∣∣∣ = 0 .
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Thus

adj (A) =

18 5 −6
−6 −2 2
−2 −1 0

 ,

and since det(A) = 2, we have

A−1 =

 9 5
2
−3

−3 −1 1
−1 −1

2
0

 .



8

0.3 Vector spaces

In this chapter, we will study abstract vector spaces. Roughly speaking a
vector space is a mathematical structure on which an operation of addition
and an operation of scalar multiplication is defined, and we require these
operations to obey a number of algebraic rules. We have already encountered
examples of vector spaces in this module. Recall that Rn is the collection of
all n-vectors. On Rn two operations were defined:

• addition: if

x =

x1...
xn

 ∈ Rn , and y =

y1...
yn

 ∈ Rn ,

then x + y is the n-vector given by

x + y =

x1 + y1
...

xn + yn

 .

• scalar multiplication: if

x =

x1...
xn

 ∈ Rn , and α is a scalar

then αx is the n-vector given by

αx =

αx1...
αxn

 .

After these operations were defined, it turned out that they satisfy a number
of rules We are now going to turn this process on its head. That is, we
start from a set on which two operations are defined, we postulate that these
operations satisfy certain rules, and we call the resulting structure a ‘vector
space’:
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Definition 0.3.1. A vector space over R, or a a real vector space, is a
non-empty set V , equipped with two operations which are mappings

(u,v) ∈ V × V 7→ u + v ∈ V , (α,u) ∈ R× V 7→ αu ∈ V,

called respectively addition and scalar multiplication, satisfying the following
axioms:

(C1) the sum of u and v, denoted by u + v, is in V ;

(C2) the scalar multiple of u by α, denoted by αu, is in V;

(A1) u + v = v + u;

(A2) u + (v + w) = (u + v) + w;

(A3) there is an element 0 in V such that u + 0 = u;

(A4) for each u in V there is an element −u in V such that u + (−u) = 0;

(A5) α(u + v) = αu + αv;

(A6) (α + β)u = αu + βu;

(A7) (αβ)u = α(βu);

(A8) 1u = u

for all u, v, w in V and all α, β ∈ R.

The elements in V are called vectors, and we usually write them using
bold letters u, v, w, etc. The numbers in R are called the scalars.

If, in the above definition, the scalar field R is replaced by the complex
numbers C , then we call V a vector space over C, or a complex vector space.

Throughout, by a vector space V , we shall mean either a real or a com-
plex vector space V .

Example 0.3.2. Let Rm×n denote the set of all m × n matrices. Define
addition and scalar multiplication of matrices in the usual way. Then Rn×m

is a real vector space.
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Example 0.3.3. Let Pn denote the set of all real polynomials with real
coefficients of degree less than n. Thus, an element p in Pn is of the form

p(t) = a0 + a1t+ a2t
2 + · · ·+ ant

n ,

where the coefficients a0, . . . , an and the variable t are real numbers.
Define addition and scalar multiplication on Pn as follows: if q ∈ Pn is

given by
q(t) = b0 + b1t+ b2t

2 + · · ·+ bnt
n ,

p is as above and α a scalar, then

• p + q is the polynomial

(p + q)(t) = (a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)tn

• αp is the polynomial

(αp)(t) = (αa0) + (αa1)t+ · · ·+ (αan)tn .

Note that (C1) and (C2) clearly hold, since if p,q ∈ Pn and α is a scalar,
then p + q and αp are again polynomials of degree less than n. Axiom (A1)
holds since if p and q are as above, then

(p + q)(t) = (a0 + b0) + (a1 + b1)t+ · · ·+ (an + bn)tn

= (b0 + a0) + (b1 + a1)t+ · · ·+ (bn + an)tn

= (q + p)(t)

so p + q = q + p. A similar calculation shows that (A2) holds. Axiom (A3)
holds if we let 0 be the zero polynomial, that is

0(t) = 0 + 0 · t+ · · ·+ 0 · tn ,

since then (p + 0)(t) = p(t), that is, p + 0 = p. Axiom (A4) holds if, given
p ∈ Pn we set −p = (−1)p, since then

(p + (−p))(t) = (a0 − a0) + (a1 − a1)t+ · · ·+ (an − an)tn = 0(t) ,

that is p + (−p) = 0. The remaining axioms are easily verified as well, using
familiar properties of real numbers.
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Example 0.3.4. Let C[a, b] denote the set of all real-valued functions that
are defined and continuous on the closed interval [a, b]. For f ,g ∈ C[a, b] and
α a scalar, define f + g and αf pointwise, that is, by

(f + g)(t) = f(t) + g(t) for all t ∈ [a, b]

(αf)(t) = αf(t) for all t ∈ [a, b]

Equipped with these operations, C[a, b] is a vector space. The closure axiom
(C1) holds because the sum of two continuous functions on [a, b] is continuous
on [a, b], and (C2) holds because a constant times a continuous function on
[a, b] is again continuous on [a, b]. Axiom (A1) holds as well, since for all
t ∈ [a, b]

(f + g)(t) = f(t) + g(t) = g(t) + f(t) = (g + f)(t) ,

so f + g = g + f . Axiom (A3) is satisfied if we let 0 be the zero function,

0(t) = 0 for all t ∈ [a, b] ,

since then
(f + 0)(t) = f(t) + 0(t) = f(t) + 0 = f(t) ,

so f +0 = f . Axiom (A4) holds if, given f ∈ C[a, b], we let −f be the function

(−f)(t) = −f(t) for all t ∈ [a, b],

since then

(f + (−f))(t) = f(t) + (−f)(t) = f(t)− f(t) = 0 = 0(t) ,

that is, f + (−f) = 0. We leave it as an exercise to verify the remaining
axioms.

We shall now derive a number of elementary properties of vector spaces.

Theorem 0.3.5. If V is a vector space and u and v are elements in V , then

(a) 0u = 0;

(b) if u + v = 0 then v = −u;1

1In the language of MTH4104 (Introduction to Algebra) this statement says that the
additive inverse is unique.
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(c) (−1)u = −u.

Proof. (a) We start by observing that

u
(A8)
= 1u = (0 + 1)u

(A6)
= 0u + 1u

(A8)
= 0u + u . (3)

Now, by (A4), there is an element −u ∈ V such that

u + (−u) = 0 . (4)

Thus

0
(4)
= u + (−u)

(3)
= (0u + u) + (−u)

(A2)
= 0u + (u + (−u))

(4)
= 0u + 0

(A3)
= 0u .

(b) Suppose that u + v = 0. Then

− u
(A3)
= −u + 0 = −u + (u + v)

(A2)
= (−u + u) + v

(A1)
= (u + (−u)) + v

(A4)
= 0 + v

(A1)
= v + 0

(A3)
= v .

(c) Notice that

0
(a)
= 0u = (1 + (−1))u

(A6)
= 1u + (−1)u

(A8)
= u + (−1)u ,

so, by (b), we conclude that (−1)u = −u.

0.4 Subspaces

Definition 0.4.1. A nonempty subset H of a vector space V is called a
subspace of V if it satisfies the following two conditions:

(i) if u,v ∈ H, then u + v ∈ H;

(ii) if u ∈ H and α is a scalar, then αu ∈ H.

Theorem 0.4.2. Let H be a subspace of a vector space V . Then H with
addition and scalar multiplication inherited from V is a vector space in its
own right.

Remark 0.4.3. If V is a vector space, then {0} and V are clearly subspaces
of V . All other subspaces are said to be proper subspaces of V . We call
{0} the zero subspace of V .
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Example 0.4.4. Show that the following are subspaces of R3:

(a) L =
{

(r, s, t, )T
∣∣ r, s, t ∈ R and r = s = t

}
;2

(b) P =
{

(r, s, t, )T
∣∣ r, s, t ∈ R and r − s+ 3t = 0

}
.

Solution. (a) Notice that an arbitrary element in L is of the form r(1, 1, 1)T

for some real number r. Thus, in particular, L is not empty, since (0, 0, 0)T ∈
L. In order to check that L is a subspace of R3 we need to check that
conditions (i) and (ii) of Definition 0.4.1 are satisfied.

We start with condition (i). Let x1 and x2 belong to L. Then x1 =
r1(1, 1, 1)T and x2 = r2(1, 1, 1)T for some real numbers r1 and r2, so

x1 + x2 = r1

1
1
1

+ r2

1
1
1

 = (r1 + r2)

1
1
1

 ∈ L .
Thus condition (i) holds.

We now check condition (ii). Let x ∈ L and let α be a real number. Then
x = r(1, 1, 1)T for some real number r ∈ R, so

αx = αr

1
1
1

 ∈ L .
Thus condition (ii) holds.

Let’s summarise: the non-empty set L satisfies conditions (i) and (ii),
that is, it is closed under addition and scalar multiplication, hence L is a
subspace of R3 as claimed.
(b) In order to see that P is a subspace of R3 we first note that (0, 0, 0)T ∈ P ,
so P is not empty.

Next we check condition (i). Let x1 = (r1, s1, t1)
T ∈ P and x2 =

(r2, s2, t2)
T ∈ P . Then r1 − s1 + 3t1 = 0 and r2 − s2 + 3t2 = 0, so

x1 + x2 =

r1 + r2
s1 + s2
t1 + t2

 ∈ P ,
2In order to save paper, hence trees and thus do our bit to prevent climate change, we

shall sometimes write n-vectors x ∈ Rn in the form (x1, . . . , xn)
T . So, for example,

(2, 3, 1)T =

2
3
1

 .
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since (r1+r2)−(s1+s2)+3(t1+t2) = (r1−s1+3t1)+(r2−s2+3t2) = 0+0 = 0.
Thus condition (i) holds.

We now check condition (ii). Let x = (r, s, t)T ∈ P and let α be a scalar.
Then r − s+ 3t = 0 and

αx =

αrαs
αt

 ∈ P
since αr − αs+ 3αt = α(r − s+ 3t) = 0. Thus condition (ii) holds as well.

As P is closed under addition and scalar multiplication, P is a subspace
of R3 as claimed.

Remark 0.4.5. In the example above the two subspaces L and P of R3 can
also be thought of as geometric objects. More precisely, L can be interpreted
geometrically as a line through the origin with direction vector (1, 1, 1)T ,
while P can be interpreted as a plane through the origin with normal vector
(1,−1, 3)T .

More generally, all proper subspaces of R3 can be interpreted geomet-
rically as either lines or planes through the origin. Similarly, all proper
subspaces of R2 can be interpreted geometrically as lines through the origin.

Example 0.4.6. Let H = { f ∈ C[−2, 2] | f(1) = 0 }. Then H is a subspace
of C[−2, 2]. First observe that the zero function is in H, so H is not empty.
Next we check that the closure properties are satisfied.

Let f ,g ∈ H . Then f(1) = 0 and g(1) = 0, so

(f + g)(1) = f(1) + g(1) = 0 + 0 = 0 ,

so f + g ∈ H. Thus H is closed under addition.
Let f ∈ H and α be a a real number. Then f(1) = 0 and

(αf)(1) = αf(1) = α · 0 = 0 ,

so αf ∈ H. Thus H is closed under scalar multiplication.
Since H is closed under addition and scalar multiplication it is a subspace

of C[−2, 2] as claimed.

Definition 0.4.7. Let A ∈ Rm×n. Then

N(A) = {x ∈ Rn | Ax = 0 }

is called the nullspace of A.
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Theorem 0.4.8. If A ∈ Rm×n, then N(A) is a subspace of Rn.

Proof. Clearly 0 ∈ N(A), so N(A) is not empty.
If x,y ∈ N(A) then Ax = 0 and Ay = 0, so

A(x + y) = Ax + Ay = 0 + 0 = 0 ,

and hence x + y ∈ N(A).
Furthermore, if x ∈ N(A) and α is a real number then Ax = 0 and

A(αx) = α(Ax) = α0 = 0 ,

so αx ∈ N(A).
Thus N(A) is a subspace of Rn as claimed.

Example 0.4.9. Determine N(A) for

A =

−3 6 −1 1 −7
1 −2 2 3 −1
2 −4 5 8 −4

 .

Solution. We need to find the solution set of Ax = 0. To do this you can
use your favourite method to solve linear systems. Perhaps the fastest one is
to bring the augmented matrix (A|0) to reduced row echelon form and write
the leading variables in terms of the free variables. In our case, we have−3 6 −1 1 −7 0

1 −2 2 3 −1 0
2 −4 5 8 −4 0

 ∼ · · · ∼
1 −2 0 −1 3 0

0 0 1 2 −2 0
0 0 0 0 0 0

 .

The leading variables are x1 and x3, and the free variables are x2, x4 and x5.
Now setting x2 = α, x4 = β and x5 = γ we find x3 = −2x4 +2x5 = −2β+2γ
and x1 = 2x2 + x4 − 3x5 = 2α + β − 3γ. Thus

x1
x2
x3
x4
x5

 =


2α + β − 3γ

α
−2β + 2γ

β
γ

 = α


2
1
0
0
0

+ β


1
0
−2
1
0

+ γ


−3
0
2
0
1

 ,
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hence

N(A) =

α


2
1
0
0
0

+ β


1
0
−2
1
0

+ γ


−3
0
2
0
1


∣∣∣∣∣∣∣∣∣∣
α, β, γ ∈ R

 .

0.5 Direct sum of subspaces

Let V be a real or complex vector space. Let W1 and W2 be subspaces of V .
We say that V is a direct sum of W1 and W2 if

V = W1 +W2 and W1 ∩W2 = {0}.

We denote this by V = W1⊕W2. The first condition above implies that each
vector v ∈ V can be expressed as a sum of a vector w1 in W1 and a vector
w2 ∈ W2. However, the second condition above implies that there is only
one way of writing v as a sum w1 +w2 with w1 ∈ W1 and w2 ∈ W2. Indeed,
if v = v1 + v2 with v1 ∈ W1 and v2 ∈ W2, then we have w1 − v1 = v2 − w2 ∈
W1 ∩W2 = {0} which implies

w1 = v1 and w2 = v2.

Conversely, if each v ∈ V can be written uniquely as a sum w1 = w2 with
w1 ∈ W1 and w2 ∈ W2, we must have W1 ∩W2 = {0}.


