Physics and Astrophysics MSci Degree Lectures - Part 6a


 -------------------------------------

These MSci Physics and Astrophysics degree Lectures Notes are based mainly on taught courses as given in previous years by the University of London.  Additional lecture notes and material is given for extra background in the relevant physics topics.

Please note: This is NOT an official course Website.  These Lecture Notes are for reference purposes only.  Some of the Lecture Notes may be incomplete or unavailable.  Most of the Lecture Notes are PDF, Word Doc or PowerPoint PPT files.  Large files may take longer to download on a slow connection.
 


Go to Part 6  |  Main Lecture Notes index  |  PART 14  |  Main Cosmology Section  |  PART 2  | Part 2a  |  Part 5a  ]



-----------------

Quantum Mechanics and Symmetry (QMUL):

qmsnotes

Solid State Physics (QMUL):


SSPNOTES



----------------------

Mechanics (QMUL):


normmod
rotate
newton
Lagrange
hamilton
dAlembert
Glossary




---------------------

PHY108 Condensed Matter Physics (QMUL):


Lecture1
Lecture2
Lecture3
Lecture4
Lecture5
Lecture5a
Lecture6
4pressure
6phonons
8dielectric
9band
9magnetic




-------------------

Electromagnetic Fields (EMF):


handout1
handout2
handout3
handout4
handout5
handout6
handout7
handout8
Handout9
handout10
handout11




-------------------

Thermodynamics and Kinetic Physics (TKP):


LNotes1
LNotes2
LNotes3
LNotes4
LNotes5
LNotes6
LNotes7
LNotes8



equations
constants




-----------------------

MTH5112 Linear Algebra I (QMUL): incomplete notes


wk1
wk2
wk4


[  Intro + Weeks 6-11 ]


5112 Linear Algebra I - Exam 2011


5112ex




------------------------

Dynamics (QMUL):


Basics
Dynamics
Rigid
Length
Time
Curvilinear
sr
Gravity
relativistic
Gravity
gr




------------------

Waves and Optics cont. (QMUL):


optics1
optics2
optics3
optics4
optics5


[  Lecture 6  ]


optics7




----------------------

Table 1 - Half-lives of various long-lived radioactive isotopes.


Isotope:                   t1/2 (years):

Samarium-146    103,000,000
Uranium-236        234,200,000
Uranium-235        703,800,000
Potassium-40     1,280,000,000
Uranium-238       4,468,000,000
Rubidium-87        4,750,000,000
Thorium-232        14,100,000,000
Lutetium-176        37,800,000,000
Rhenium-187       43,500,000,000
Lanthanium-138     105,000,000,000
Samarium-147     106,000,000,000


The Earth's age of 4.55 billion years is known with an error of less than one percent from the dating of meteorites using a variety of elements from the table above.

4.55 billion years (plus or minus about 1%)


------------------------------------------------------------------
Table 2 - Ages derived from various recent studies of radioactive elements in old stars.

Authors            Isotope    Star        Age:

Cowan et al. (1997)     232Th     CS 22892-052     15.2 +/- 3.7 Gyr
Cowan et al. (1999)     232Th     HD115444     15.6 +/- 4.6 Gyr
Cayrel et al. (2001)     238U     CS 31082-001     12.5 +/- 3 Gyr
Wanajo et al. (2002)     238U     CS 31082-001     14.1 +/- 2.5 Gyr


The Sun's main-sequence lifetime is about 10 billion years, so a star 10,000 times as luminous will live only 10 million years.

... an age of 9.5 +1.1/-0.8 Gyr for the disk of the Milky Way


Age estimate for the Milky Way galaxy obtaining 14.5 +2.8/-2.2 Gyr. (Comparable to the 13.7 billion yrs for the Universe)


A reasonable guesstimate of c. 13 Gyr for the MW galaxy, t0 ~ 13.7 Gyr for the age of the Universe, and H0 ~ 72 km/s/Mpc. (See WMAP, HST and SNe data).

An age estimate for the oldest globular clusters ~ 12 Gyr might be reasonable, as the ages have been revised downward from the earlier initial estimates.


-------
Radioactive Dating of an Old Star

A very interesting paper by Cowan et al. (1997, ApJ, 480, 246) discusses the thorium abundance in an old halo star. Normally it is not possible to measure the abundance of radioactive isotopes in other stars because the lines are too weak. But in CS 22892-052 the thorium lines can be seen because the iron lines are very weak. The Th/Eu (Europium) ratio in this star is 0.219 compared to 0.369 in the Solar System now. Thorium decays with a half-life of 14.05 Gyr, so the Solar System formed with Th/Eu = 2^4.6/14.05 * 0.369 = 0.463. If CS 22892-052 formed with the same Th/Eu ratio it is then 15.2 +/- 3.5 Gyr old. It is actually probably slightly older because some of the thorium that would have gone into the Solar System decayed before the Sun formed, and this correction depends on the nucleosynthesis history of the Milky Way. Nonetheless, this is still an interesting measure of the age of the oldest stars that is independent of the main-sequence lifetime method.

A later paper by Cowan et al. (1999, ApJ, 521, 194) gives 15.6 +/- 4.6 Gyr for the age based on two stars: CS 22892-052 and HD 115444.

A another star, CS 31082-001, shows an age of 12.5 +/- 3 Gyr based on the decay of U-238 [Cayrel, et al. 2001, Nature, 409, 691-692]. Wanajo et al. refine the predicted U/Th production ratio and get 14.1 +/- 2.5 Gyr for the age of this star.
---

But recent Hipparcos results show that the globular clusters are further away than previously thought, so their stars are more luminous. Gratton et al. give ages between 8.5 and 13.3 Gyr with 12.1 being most likely, while Reid gives ages between 11 and 13 Gyr, and Chaboyer et al. give 11.5 +/- 1.3 Gyr for the mean age of the oldest globular clusters. 


-------------------------------------------------------------------
Table 3 - Recent main-sequence turnoff measurements of the ages of several globular clusters.

Authors:                                    Age:

Chaboyer et al. 1997        14.6 +/- 1.7 Gyr
Gratton et al. (1997)          11.8 +/- 2.3 Gyr
Reid et al. (1997)              12-13 Gyr
Chaboyer et al. (2001)     11.5 +/- 1.3 Gyr
 

--------------------------------------------------------------------
Table 4 - Summary of recent measurement of the age of the Universe.

Method:                      Authors            Object        Age:
           
Cosmological:         Various           Universe    13.7 +/- 0.2 Gyr

Radiometric:         Cowan et al. (1999)     HD 115444CS       14.5 +/- 3.0 Gyr
                                 Wanajo et al. (2002)     CS 31082-001     16 +/- 5 Gyr
            
Main-sequence turnoff:     Gratton et al. (1999)     Multiple GCs     12.3 +/- 2.5 Gyr
                                          Chaboyer et al. (2001)     Multiple GCs     12.0 +/- 1.5 Gyr
            
White dwarf cooling:          Hansen et al. (2004)              M 4            12.8 +/- 1.1 Gyr
 

Determination of the Universe's Age, to


Source:- Daniel Perley, (Berkeley)

--------------------------------------------------------------
Age estimates

Method:        Value [Gyr]:    +Errorbar:    -Errorbar:

Elements       14.5      +2.8        -2.5
Old Stars        14.4      +2.2        -2.2
GC MSTO        12.2    +1.3        -1.3
Disk WDs       11.5      +infinity    -1
GC WDs          12.8      +1.1        -1.1

Weighted Mean    12.94     +0.75        -0.75

(Estimated age of the Universe, t0 ~ 13.7 Gyr as above)


-----------------------------------------------------------------------------------
... the baryon acoustic scale at a redshift of z = 0.6, or 5.7 billion years before now ...

New observations using the Hubble Space Telescope yield a distance of 17.1 +/- 1.8 Mpc. to the Virgo cluster galaxy M100. This distance leads to a value of H0 = 80 +/- 17 km/s/Mpc

Ten+1 measurements of the Hubble Constant

Method Used:                Citation:            Value (km/second/Megaparsec):

Cepheid variables in distant galaxies    W. Freedman et al (1999)    70 +/- 7
M101 group velocity and distance    Sandage and Tammann (1974)    55.5 +/- 8.7
Virgo Cluster                Peebles (1977)                    42 - 77
Globular Clusters            Hanes (1979)                   80 +/- 11
Virgo Sc HII luminosities        Kennicutt (1981)        55
Type I supernovae            Branch (1979)                    56 +/- 15
Type I supernovae            Sandage and Tammann (1982)    50 +/- 7
Infrared Tully-Fisher relation        Aaronson and Mould (1983)    82 +/- 10
SN-Ia and Cepheids            Sandage, et al. (1994)                55 +/- 8
Cepheids in Virgo (M100)        Freedman, et al. (1994)        80 +/- 17
Surface Brightness Fluctuation                Tully (1993)            90 +/- 10

-----------------------------------------------------------------------------------------------------
EM Spectrum

Region         Wavelength         Wavelength           Frequency             Photon Energy:
                        (Angstroms)     (centimeters)              (Hz)                           (eV)

Radio                   > 10^9             > 10 (=0.1m)          f < 3 x 10^9             E < 10^-5
Microwave         10^9 - 10^6     10 -0.01 (0.1-10^-4m)  3 x 10^9-3 x 10^12      10^-5-0.01
Infrared            10^6 - 7000       0.0 -7 x 10^-5             3 x 10^12 -4.3 x 10^14     0.01 - 2
Visible               7000 - 4000     7 x 10^-5 -4 x 10^-5   4.3 x 10^14 -7.5 x 10^14     2 - 3
Ultraviolet         4000 - 10          4 x 10^-5 -10^-7     7.5 x 10^14 -3 x 10^17     3 - 10^3
X-Rays               10 - 0.1            10^- -10^-9            3 x 10^17-3 x 10^19         10^3 - 10^5
Gamma Rays     < 0.1               < 10^-9 (=10^-11m)    > 3 x 10^19             > 10^5

--------------------------------------------------------------------------------------------------------

Visible region :
Color:          Wavelength:

Violet         400-420 nm
Indigo        420-440 nm
Blue           440-490 nm
Green        490-570 nm
Yellow        570-585 nm
Orange     585-620 nm
Red           620-780 nm

------------------------------------------------------------------------------------------
Region of the EM spectrum  - Main interactions with matter :

Radio - Collective oscillation of charge carriers in bulk material (plasma oscillation). An example would be the oscillation of the electrons in an antenna.

Microwave through far infrared - Plasma oscillation, molecular rotation

Near infrared - Molecular vibration, plasma oscillation (in metals only)

Visible - Molecular electron excitation (including pigment molecules found in the human retina), plasma oscillations (in metals only)

Ultraviolet - Excitation of molecular and atomic valence electrons, including ejection of the electrons (photoelectric effect)

X-rays - Excitation and ejection of core atomic electrons, Compton scattering (for low atomic numbers)

Gamma rays - Energetic ejection of core electrons in heavy elements, Compton scattering (for all atomic numbers), excitation of atomic nuclei, including dissociation of nuclei.

High-energy gamma rays - Creation of particle-antiparticle pairs. At very high energies a single photon can create a shower of high-energy particles and antiparticles upon interaction with matter.

----------------------------------------------------------------------------------------------------------









Keywords: physics, astrophysics, astronomy, stellar structure, stellar evolution, quantum mechanics, general relativity, cosmology, lecture notes, MSc degree, MSci degree, university degree, physical sciences









































Physics and Astrophysics MSci degree lecture notes - Part 6a